A Primer on Chainmails: Structures for Point-free Connectivity

J. F. Du Plessis, Zurab Janelidze, Bernardus A. Wessels
{"title":"A Primer on Chainmails: Structures for Point-free Connectivity","authors":"J. F. Du Plessis, Zurab Janelidze, Bernardus A. Wessels","doi":"arxiv-2406.16923","DOIUrl":null,"url":null,"abstract":"In point-free topology, one abstracts the poset of open subsets of a\ntopological space, by replacing it with a frame (a complete lattice, where meet\ndistributes over arbitrary join). In this paper we propose a similar\nabstraction of the posets of connected subsets in various space-like\nstructures. The analogue of a frame is called a chainmail, which is defined as\na poset admitting joins of its mails, i.e., subsets having a lower bound. The\nmain result of the paper is an equivalence between a subcategory of the\ncategory of complete join-semilattices and the category of chainmails.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In point-free topology, one abstracts the poset of open subsets of a topological space, by replacing it with a frame (a complete lattice, where meet distributes over arbitrary join). In this paper we propose a similar abstraction of the posets of connected subsets in various space-like structures. The analogue of a frame is called a chainmail, which is defined as a poset admitting joins of its mails, i.e., subsets having a lower bound. The main result of the paper is an equivalence between a subcategory of the category of complete join-semilattices and the category of chainmails.
链甲入门:无点连接结构
在无点拓扑学中,人们通过用一个框架(一个完整的网格,其中 meetdistributes over arbitrary join)来替代它,从而抽象出了拓扑空间的开放子集的正集(poset of open subsets of atopological space)。在本文中,我们提出了对各种空间结构中连通子集的正集进行类似抽象的方法。框架的类似物被称为链锁,它被定义为一个容许其邮件连接的集合,即具有下界的子集。本文的主要结果是完整连接半网格范畴的一个子范畴与链式邮件范畴之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信