First Measurement of Deeply Virtual Compton Scattering on the Neutron with Detection of the Active Neutron

A. Hobart, S. Niccolai, M. Čuić, K. Kumerički, P. Achenbach, J. S. Alvarado, W. R. Armstrong, H. Atac, H. Avakian, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, S. Boiarinov, M. Bondi, W. A. Booth, F. Bossù, K. -Th. Brinkmann, W. J. Briscoe, W. K. Brooks, S. Bueltmann, V. D. Burkert, T. Cao, R. Capobianco, D. S. Carman, P. Chatagnon, G. Ciullo, P. L. Cole, M. Contalbrigo, A. D'Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, S. Fegan, A. Filippi, C. Fogler, K. Gates, G. Gavalian, G. P. Gilfoyle, D. Glazier, R. W. Gothe, Y. Gotra, M. Guidal, K. Hafidi, H. Hakobyan, M. Hattawy, F. Hauenstein, D. Heddle, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. Jiang, H. S. Jo, K. Joo, T. Kageya, A. Kim, W. Kim, V. Klimenko, A. Kripko, V. Kubarovsky, S. E. Kuhn, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, I. J. D. MacGregor, D. Marchand, V. Mascagna, M. Maynes, B. McKinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. Mokeev, C. Muñoz Camacho, P. Nadel-Turonski, P. Naidoo, K. Neupane, G. Niculescu, M. Osipenko, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, S. J. Paul, W. Phelps, N. Pilleux, M. Pokhrel, S. Polcher Rafael, J. Poudel, J. W. Price, Y. Prok, T. Reed, J. Richards, M. Ripani, J. Ritman, P. Rossi, A. A. Golubenko, C. Salgado, S. Schadmand, A. Schmidt, Marshall B. C. Scott, E. M. Seroka, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, N. Sparveris, M. Spreafico, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, N. Trotta, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, V. Tommaso, H. Voskanyan, E. Voutier, D. P Watts, X. Wei, R. Williams, M. H. Wood, L. Xu, N. Zachariou, J. Zhang, Z. W. Zhao, M. Zurek
{"title":"First Measurement of Deeply Virtual Compton Scattering on the Neutron with Detection of the Active Neutron","authors":"A. Hobart, S. Niccolai, M. Čuić, K. Kumerički, P. Achenbach, J. S. Alvarado, W. R. Armstrong, H. Atac, H. Avakian, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, S. Boiarinov, M. Bondi, W. A. Booth, F. Bossù, K. -Th. Brinkmann, W. J. Briscoe, W. K. Brooks, S. Bueltmann, V. D. Burkert, T. Cao, R. Capobianco, D. S. Carman, P. Chatagnon, G. Ciullo, P. L. Cole, M. Contalbrigo, A. D'Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, S. Fegan, A. Filippi, C. Fogler, K. Gates, G. Gavalian, G. P. Gilfoyle, D. Glazier, R. W. Gothe, Y. Gotra, M. Guidal, K. Hafidi, H. Hakobyan, M. Hattawy, F. Hauenstein, D. Heddle, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. Jiang, H. S. Jo, K. Joo, T. Kageya, A. Kim, W. Kim, V. Klimenko, A. Kripko, V. Kubarovsky, S. E. Kuhn, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, I. J. D. MacGregor, D. Marchand, V. Mascagna, M. Maynes, B. McKinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. Mokeev, C. Muñoz Camacho, P. Nadel-Turonski, P. Naidoo, K. Neupane, G. Niculescu, M. Osipenko, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, S. J. Paul, W. Phelps, N. Pilleux, M. Pokhrel, S. Polcher Rafael, J. Poudel, J. W. Price, Y. Prok, T. Reed, J. Richards, M. Ripani, J. Ritman, P. Rossi, A. A. Golubenko, C. Salgado, S. Schadmand, A. Schmidt, Marshall B. C. Scott, E. M. Seroka, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, N. Sparveris, M. Spreafico, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, N. Trotta, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, V. Tommaso, H. Voskanyan, E. Voutier, D. P Watts, X. Wei, R. Williams, M. H. Wood, L. Xu, N. Zachariou, J. Zhang, Z. W. Zhao, M. Zurek","doi":"arxiv-2406.15539","DOIUrl":null,"url":null,"abstract":"Measuring Deeply Virtual Compton Scattering on the neutron is one of the\nnecessary steps to understand the structure of the nucleon in terms of\nGeneralized Parton Distributions (GPDs). Neutron targets play a complementary\nrole to transversely polarized proton targets in the determination of the GPD\n$E$. This poorly known and poorly constrained GPD is essential to obtain the\ncontribution of the quarks' angular momentum to the spin of the nucleon. DVCS\non the neutron was measured for the first time selecting the exclusive final\nstate by detecting the neutron, using the Jefferson Lab longitudinally\npolarized electron beam, with energies up to 10.6 GeV, and the CLAS12 detector.\nThe extracted beam-spin asymmetries, combined with DVCS observables measured on\nthe proton, allow a clean quark-flavor separation of the imaginary parts of the\nGPDs $H$ and $E$.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"203 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring Deeply Virtual Compton Scattering on the neutron is one of the necessary steps to understand the structure of the nucleon in terms of Generalized Parton Distributions (GPDs). Neutron targets play a complementary role to transversely polarized proton targets in the determination of the GPD $E$. This poorly known and poorly constrained GPD is essential to obtain the contribution of the quarks' angular momentum to the spin of the nucleon. DVCS on the neutron was measured for the first time selecting the exclusive final state by detecting the neutron, using the Jefferson Lab longitudinally polarized electron beam, with energies up to 10.6 GeV, and the CLAS12 detector. The extracted beam-spin asymmetries, combined with DVCS observables measured on the proton, allow a clean quark-flavor separation of the imaginary parts of the GPDs $H$ and $E$.
首次测量中子的深虚康普顿散射并探测到活动中子
测量中子的深虚康普顿散射是根据广义粒子分布(GPD)了解核子结构的必要步骤之一。在确定 GPD$E$ 时,中子靶与横向极化质子靶起着互补作用。这种知之甚少和约束不足的 GPD 对于获得夸克角动量对核子自旋的贡献至关重要。通过使用杰斐逊实验室的纵向极化电子束(能量高达10.6 GeV)和CLAS12探测器对中子进行探测,首次选择了中子的排他性终态来测量中子的DVCS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信