Connectivity conditions and boundary Poincaré inequalities

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Olli Tapiola, Xavier Tolsa
{"title":"Connectivity conditions and boundary Poincaré inequalities","authors":"Olli Tapiola, Xavier Tolsa","doi":"10.2140/apde.2024.17.1831","DOIUrl":null,"url":null,"abstract":"<p>Inspired by recent work of Mourgoglou and the second author, and earlier work of Hofmann, Mitrea and Taylor, we consider connections between the local John condition, the Harnack chain condition and weak boundary Poincaré inequalities in open sets <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup> </math>, with codimension-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math> Ahlfors–David regular boundaries. First, we prove that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> satisfies both the local John condition and the exterior corkscrew condition, then <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> also satisfies the Harnack chain condition (and hence is a chord-arc domain). Second, we show that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> is a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>-sided chord-arc domain, then the boundary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>∂</mi><mi mathvariant=\"normal\">Ω</mi></math> supports a Heinonen–Koskela-type weak <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math>-Poincaré inequality. We also construct an example of a set <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math> such that the boundary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>∂</mi><mi mathvariant=\"normal\">Ω</mi></math> is Ahlfors–David regular and supports a weak boundary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math>-Poincaré inequality but <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> is not a chord-arc domain. Our proofs utilize significant advances in particularly harmonic measure, uniform rectifiability and metric Poincaré theories. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1831","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by recent work of Mourgoglou and the second author, and earlier work of Hofmann, Mitrea and Taylor, we consider connections between the local John condition, the Harnack chain condition and weak boundary Poincaré inequalities in open sets Ω n+1 , with codimension-1 Ahlfors–David regular boundaries. First, we prove that if Ω satisfies both the local John condition and the exterior corkscrew condition, then Ω also satisfies the Harnack chain condition (and hence is a chord-arc domain). Second, we show that if Ω is a 2-sided chord-arc domain, then the boundary Ω supports a Heinonen–Koskela-type weak 1-Poincaré inequality. We also construct an example of a set Ω n+1 such that the boundary Ω is Ahlfors–David regular and supports a weak boundary 1-Poincaré inequality but Ω is not a chord-arc domain. Our proofs utilize significant advances in particularly harmonic measure, uniform rectifiability and metric Poincaré theories.

连通性条件和边界 Poincaré 不等式
受 Mourgoglou 和第二作者的最新研究,以及 Hofmann、Mitrea 和 Taylor 的早期研究的启发,我们考虑了开集 Ω ⊂ ℝn+1 中的局部约翰条件、哈纳克链条件和弱边界 Poincaré 不等式之间的联系,开集 Ω ⊂ ℝn+1 具有标度为 1 的 Ahlfors-David 正则边界。首先,我们证明如果 Ω 同时满足局部约翰条件和外部螺旋条件,那么 Ω 也满足哈纳克链条件(因此是一个弦弧域)。其次,我们证明了如果 Ω 是一个双面弦弧域,那么边界 ∂Ω 支持海诺宁-科斯克拉型弱 1-Poincaré 不等式。我们还构造了一个集合 Ω ⊂ ℝn+1 的例子,使得边界 ∂Ω 是 Ahlfors-David 正则并支持弱边界 1-Poincaré 不等式,但 Ω 不是弦弧域。我们的证明利用了特别是调和度量、均匀可整性和度量 Poincaré 理论的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信