Developing BioNavi for Hybrid Retrosynthesis Planning

JACS Au Pub Date : 2024-07-03 DOI:10.1021/jacsau.4c00228
Tao Zeng, Zhehao Jin, Shuangjia Zheng, Tao Yu, Ruibo Wu
{"title":"Developing BioNavi for Hybrid Retrosynthesis Planning","authors":"Tao Zeng, Zhehao Jin, Shuangjia Zheng, Tao Yu, Ruibo Wu","doi":"10.1021/jacsau.4c00228","DOIUrl":null,"url":null,"abstract":"Illuminating synthetic pathways is essential for producing valuable chemicals, such as bioactive molecules. Chemical and biological syntheses are crucial, and their integration often leads to more efficient and sustainable pathways. Despite the rapid development of retrosynthesis models, few of them consider both chemical and biological syntheses, hindering the pathway design for high-value chemicals. Here, we propose BioNavi by innovating multitask learning and reaction templates into the deep learning-driven model to design hybrid synthesis pathways in a more interpretable manner. BioNavi outperforms existing approaches on different data sets, achieving a 75% hit rate in replicating reported biosynthetic pathways and displaying superior ability in designing hybrid synthesis pathways. Additional case studies further illustrate the potential application of BioNavi in a de novo pathway design. The enhanced web server (http://biopathnavi.qmclab.com/bionavi/) simplifies input operations and implements step-by-step exploration according to user experience. We show that BioNavi is a handy navigator for designing synthetic pathways for various chemicals.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Illuminating synthetic pathways is essential for producing valuable chemicals, such as bioactive molecules. Chemical and biological syntheses are crucial, and their integration often leads to more efficient and sustainable pathways. Despite the rapid development of retrosynthesis models, few of them consider both chemical and biological syntheses, hindering the pathway design for high-value chemicals. Here, we propose BioNavi by innovating multitask learning and reaction templates into the deep learning-driven model to design hybrid synthesis pathways in a more interpretable manner. BioNavi outperforms existing approaches on different data sets, achieving a 75% hit rate in replicating reported biosynthetic pathways and displaying superior ability in designing hybrid synthesis pathways. Additional case studies further illustrate the potential application of BioNavi in a de novo pathway design. The enhanced web server (http://biopathnavi.qmclab.com/bionavi/) simplifies input operations and implements step-by-step exploration according to user experience. We show that BioNavi is a handy navigator for designing synthetic pathways for various chemicals.

Abstract Image

开发用于混合逆合成规划的 BioNavi
阐明合成途径对于生产生物活性分子等有价值的化学品至关重要。化学合成和生物合成至关重要,它们的结合往往能带来更高效、更可持续的合成途径。尽管逆合成模型发展迅速,但很少有模型同时考虑化学合成和生物合成,这阻碍了高价值化学品的合成途径设计。在此,我们提出了 BioNavi,将多任务学习和反应模板创新纳入深度学习驱动的模型,以更易解释的方式设计混合合成途径。BioNavi 在不同数据集上的表现优于现有方法,在复制已报道的生物合成途径方面达到了 75% 的命中率,并在设计混合合成途径方面表现出卓越的能力。其他案例研究进一步说明了 BioNavi 在全新途径设计中的潜在应用。增强型网络服务器 (http://biopathnavi.qmclab.com/bionavi/) 简化了输入操作,并根据用户体验实现了逐步探索。我们的研究表明,BioNavi 是设计各种化学物质合成途径的便捷导航器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信