Qubit stabilisation via learning capable materials

Andrei T. Patrascu
{"title":"Qubit stabilisation via learning capable materials","authors":"Andrei T. Patrascu","doi":"arxiv-2406.04352","DOIUrl":null,"url":null,"abstract":"I describe the engineered decoherence of a qubit state by means of an\nenvironment formed out of a neurally architected material. Such a material is a\nmaterial that can adjust its inner properties in the same way a neural network\nis adjusting its weights, subject to a built-in cost function. Such a material\nis naturally found in biological structures (like a brain) but can in principle\nbe engineered at a microscopic level. If such a material is used as an\nenvironment for a Nakajima-Zwanzig equation describing the controlled\ndecoherence of a quantum state, we obtain a modified decoherence that allows\nfor correlated states to exist longer or even to become robust. Such a neural\nmaterial can also be architected to implement certain quantum gate operations\non the encapsulated qubit.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.04352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

I describe the engineered decoherence of a qubit state by means of an environment formed out of a neurally architected material. Such a material is a material that can adjust its inner properties in the same way a neural network is adjusting its weights, subject to a built-in cost function. Such a material is naturally found in biological structures (like a brain) but can in principle be engineered at a microscopic level. If such a material is used as an environment for a Nakajima-Zwanzig equation describing the controlled decoherence of a quantum state, we obtain a modified decoherence that allows for correlated states to exist longer or even to become robust. Such a neural material can also be architected to implement certain quantum gate operations on the encapsulated qubit.
通过学习能力材料实现质子稳定
我描述了通过一种由神经构造材料形成的环境,对量子比特状态进行工程解相干的过程。这种材料可以像神经网络调整权重一样,根据内置的成本函数调整其内部属性。这种材料自然存在于生物结构(如大脑)中,但原则上也可以在微观层面进行设计。如果把这种材料用作描述量子态受控退相干的中岛-茨万齐格方程的环境,我们就能获得一种改进的退相干,使相关态存在更长时间,甚至变得稳健。这样的神经材料也可以设计成在封装的量子比特上实现某些量子门操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信