The points of space are not points: their wavefunctions remove the ultraviolet divergences of quantum field theory

Kevin Cahill
{"title":"The points of space are not points: their wavefunctions remove the ultraviolet divergences of quantum field theory","authors":"Kevin Cahill","doi":"arxiv-2406.09448","DOIUrl":null,"url":null,"abstract":"The points $p(x)$ of space are observables that obey quantum mechanics with\naverage values $\\langle p(x) \\rangle$ that obey general relativity. In empty\nflat 3-space, a point $p(x)$ may be represented as the sum $ \\boldsymbol p(x) =\n\\langle \\boldsymbol p(x) \\rangle+ \\boldsymbol \\epsilon(x)$ of its average value\n$\\langle \\boldsymbol p(x) \\rangle = \\boldsymbol x$ and its quantum remainder $\n\\boldsymbol \\epsilon(x)$. The ubiquitous Fourier exponential $\\exp( i\n\\boldsymbol k \\cdot \\boldsymbol p(x))$ is then $\\exp( i \\boldsymbol k \\cdot (\n\\boldsymbol x + \\boldsymbol \\epsilon))$. If the probability distribution of the\nquantum remainders $ \\boldsymbol \\epsilon(x)$ is normal and of width $\\sigma$,\nthen the average of the exponential $\\langle \\exp(i \\boldsymbol k ( \\boldsymbol\nx + \\boldsymbol \\epsilon ) \\rangle$ contains a gaussian factor $ \\exp( -\n\\sigma^2 \\boldsymbol k^2/2 ) $ which makes self-energies, Feynman diagrams and\ndark energy ultraviolet finite. This complex of ideas requires new bosons and\nsuggests that supersymmetry is softly broken.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The points $p(x)$ of space are observables that obey quantum mechanics with average values $\langle p(x) \rangle$ that obey general relativity. In empty flat 3-space, a point $p(x)$ may be represented as the sum $ \boldsymbol p(x) = \langle \boldsymbol p(x) \rangle+ \boldsymbol \epsilon(x)$ of its average value $\langle \boldsymbol p(x) \rangle = \boldsymbol x$ and its quantum remainder $ \boldsymbol \epsilon(x)$. The ubiquitous Fourier exponential $\exp( i \boldsymbol k \cdot \boldsymbol p(x))$ is then $\exp( i \boldsymbol k \cdot ( \boldsymbol x + \boldsymbol \epsilon))$. If the probability distribution of the quantum remainders $ \boldsymbol \epsilon(x)$ is normal and of width $\sigma$, then the average of the exponential $\langle \exp(i \boldsymbol k ( \boldsymbol x + \boldsymbol \epsilon ) \rangle$ contains a gaussian factor $ \exp( - \sigma^2 \boldsymbol k^2/2 ) $ which makes self-energies, Feynman diagrams and dark energy ultraviolet finite. This complex of ideas requires new bosons and suggests that supersymmetry is softly broken.
空间点不是点:它们的波函数消除了量子场论的紫外发散性
空间的点 $p(x)$ 是服从量子力学的观测值,其平均值 $\langle p(x) \rangle$ 则服从广义相对论。在空平三维空间中,一个点 $p(x)$ 可以表示为其平均值 $langle \boldsymbol p(x) \rangle+ \boldsymbol \epsilon(x)$ 与其量子余数 $\boldsymbol p(x) \rangle = \boldsymbol x 的和。无处不在的傅立叶指数 $\exp( i\boldsymbol k \cdot \boldsymbol p(x))$ 就是 $\exp( i \boldsymbol k \cdot (\boldsymbol x + \boldsymbol \epsilon))$。如果量子余数 $ \boldsymbol \epsilon(x)$ 的概率分布是正态分布且宽度为 $\sigma$、那么指数平均值$ \exp(i \boldsymbol k ( \boldsymbolx + \boldsymbol \epsilon ) \rangle$ 包含一个高斯因子$ \exp( -\sigma^2 \boldsymbol k^2/2 ) $ ,它使得自能、费曼图和暗能紫外有限。这种复杂的想法需要新的玻色子,并表明超对称性是软破坏的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信