New custom rating for improving recommendation system performance

IF 8.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Tora Fahrudin, Dedy Rahman Wijaya
{"title":"New custom rating for improving recommendation system performance","authors":"Tora Fahrudin, Dedy Rahman Wijaya","doi":"10.1186/s40537-024-00952-3","DOIUrl":null,"url":null,"abstract":"<p>Recommendation system is currently attracting the interest of many explorers. Various new businesses have surfaced with the rise of online marketing (E-Commerce) in response to Covid-19 pandemic. This phenomenon allows recommendation items through a system called Collaborative Filtering (CF), aiming to improve shopping experience of users. Typically, the effectiveness of CF relies on the precise identification of similar profile users by similarity algorithms. Traditional similarity measures are based on the user-item rating matrix. Approximately, four custom ratings (CR) were used along with a new rating formula, termed New Custom Rating (NCR), derived from the popularity of users and items in addition to the original rating. Specifically, NCR optimized recommendation system performance by using the popularity of users and items to determine new ratings value, rather than solely relying on the original rating. Additionally, the formulas improved the representativeness of the new rating values and the accuracy of similarity algorithm calculations. Consequently, the increased accuracy of recommendation system was achieved. The implementation of NCR across four CR algorithms and recommendation system using five public datasets was examined. Consequently, the experimental results showed that NCR significantly increased recommendation system accuracy, as evidenced by reductions in RMSE, MSE, and MAE as well as increasing FCP and Hit Rate. Moreover, by combining the popularity of users and items into rating calculations, NCR improved the accuracy of various recommendation system algorithms reducing RMSE, MSE, and MAE up to 62.10%, 53.62%, 65.97%, respectively, while also increasing FCP and Hit Rate up to 11.89% and 31.42%, respectively.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"23 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00952-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Recommendation system is currently attracting the interest of many explorers. Various new businesses have surfaced with the rise of online marketing (E-Commerce) in response to Covid-19 pandemic. This phenomenon allows recommendation items through a system called Collaborative Filtering (CF), aiming to improve shopping experience of users. Typically, the effectiveness of CF relies on the precise identification of similar profile users by similarity algorithms. Traditional similarity measures are based on the user-item rating matrix. Approximately, four custom ratings (CR) were used along with a new rating formula, termed New Custom Rating (NCR), derived from the popularity of users and items in addition to the original rating. Specifically, NCR optimized recommendation system performance by using the popularity of users and items to determine new ratings value, rather than solely relying on the original rating. Additionally, the formulas improved the representativeness of the new rating values and the accuracy of similarity algorithm calculations. Consequently, the increased accuracy of recommendation system was achieved. The implementation of NCR across four CR algorithms and recommendation system using five public datasets was examined. Consequently, the experimental results showed that NCR significantly increased recommendation system accuracy, as evidenced by reductions in RMSE, MSE, and MAE as well as increasing FCP and Hit Rate. Moreover, by combining the popularity of users and items into rating calculations, NCR improved the accuracy of various recommendation system algorithms reducing RMSE, MSE, and MAE up to 62.10%, 53.62%, 65.97%, respectively, while also increasing FCP and Hit Rate up to 11.89% and 31.42%, respectively.

Abstract Image

用于提高推荐系统性能的新自定义评级
推荐系统目前正吸引着众多探索者的兴趣。随着网络营销(电子商务)的兴起,各种新业务也随之浮出水面,以应对 Covid-19 的流行。这种现象允许通过一种称为协同过滤(CF)的系统来推荐商品,目的是改善用户的购物体验。通常情况下,CF 的有效性依赖于通过相似性算法精确识别相似资料用户。传统的相似性测量方法基于用户-物品评级矩阵。大约使用了四个自定义评级(CR)和一个新的评级公式,称为新自定义评级(NCR),新自定义评级是在原始评级的基础上,根据用户和物品的受欢迎程度得出的。具体来说,NCR 通过使用用户和项目的受欢迎程度来确定新的评级值,而不是仅仅依赖于原始评级,从而优化了推荐系统的性能。此外,这些公式还提高了新评分值的代表性和相似性算法计算的准确性。因此,推荐系统的准确性得到了提高。我们使用五个公共数据集对 NCR 在四种 CR 算法和推荐系统中的实施情况进行了检验。实验结果表明,NCR 显著提高了推荐系统的准确性,这体现在 RMSE、MSE 和 MAE 的降低以及 FCP 和命中率的提高上。此外,通过将用户和项目的受欢迎程度纳入评级计算,NCR 提高了各种推荐系统算法的准确性,RMSE、MSE 和 MAE 分别降低了 62.10%、53.62% 和 65.97%,FCP 和命中率也分别提高了 11.89% 和 31.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Big Data
Journal of Big Data Computer Science-Information Systems
CiteScore
17.80
自引率
3.70%
发文量
105
审稿时长
13 weeks
期刊介绍: The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信