A Personalised Learning Tool for Physics Undergraduate Students Built On a Large Language Model for Symbolic Regression

Yufan Zhu, Zi-Yu Khoo, Jonathan Sze Choong Low, Stephane Bressan
{"title":"A Personalised Learning Tool for Physics Undergraduate Students Built On a Large Language Model for Symbolic Regression","authors":"Yufan Zhu, Zi-Yu Khoo, Jonathan Sze Choong Low, Stephane Bressan","doi":"arxiv-2407.00065","DOIUrl":null,"url":null,"abstract":"Interleaved practice enhances the memory and problem-solving ability of\nstudents in undergraduate courses. We introduce a personalized learning tool\nbuilt on a Large Language Model (LLM) that can provide immediate and\npersonalized attention to students as they complete homework containing\nproblems interleaved from undergraduate physics courses. Our tool leverages the\ndimensional analysis method, enhancing students' qualitative thinking and\nproblem-solving skills for complex phenomena. Our approach combines LLMs for\nsymbolic regression with dimensional analysis via prompt engineering and offers\nstudents a unique perspective to comprehend relationships between physics\nvariables. This fosters a broader and more versatile understanding of physics\nand mathematical principles and complements a conventional undergraduate\nphysics education that relies on interpreting and applying established\nequations within specific contexts. We test our personalized learning tool on\nthe equations from Feynman's lectures on physics. Our tool can correctly\nidentify relationships between physics variables for most equations,\nunderscoring its value as a complementary personalized learning tool for\nundergraduate physics students.","PeriodicalId":501565,"journal":{"name":"arXiv - PHYS - Physics Education","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interleaved practice enhances the memory and problem-solving ability of students in undergraduate courses. We introduce a personalized learning tool built on a Large Language Model (LLM) that can provide immediate and personalized attention to students as they complete homework containing problems interleaved from undergraduate physics courses. Our tool leverages the dimensional analysis method, enhancing students' qualitative thinking and problem-solving skills for complex phenomena. Our approach combines LLMs for symbolic regression with dimensional analysis via prompt engineering and offers students a unique perspective to comprehend relationships between physics variables. This fosters a broader and more versatile understanding of physics and mathematical principles and complements a conventional undergraduate physics education that relies on interpreting and applying established equations within specific contexts. We test our personalized learning tool on the equations from Feynman's lectures on physics. Our tool can correctly identify relationships between physics variables for most equations, underscoring its value as a complementary personalized learning tool for undergraduate physics students.
建立在符号回归大型语言模型上的物理本科生个性化学习工具
交错练习可以增强本科生的记忆力和解决问题的能力。我们介绍了一种基于大语言模型(LLM)的个性化学习工具,它可以在学生完成包含本科物理课程交错问题的家庭作业时提供即时和个性化的关注。我们的工具利用维度分析方法,提高学生对复杂现象的定性思考和解决问题的能力。我们的方法将用于符号回归的 LLM 与提示工程的维度分析相结合,为学生理解物理变量之间的关系提供了一个独特的视角。这有助于学生更广泛、更全面地理解物理和数学原理,是对传统本科物理教育的补充,因为传统本科物理教育依赖于在特定环境中解释和应用既定的公式。我们用费曼物理学讲座中的方程式测试了我们的个性化学习工具。我们的工具可以正确识别大多数方程式的物理变量之间的关系,这凸显了它作为物理系本科生个性化学习补充工具的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信