Spin-deformation coupling in two-dimensional polar materials

J. A. Sánchez-Monroy, Carlos Mera Acosta
{"title":"Spin-deformation coupling in two-dimensional polar materials","authors":"J. A. Sánchez-Monroy, Carlos Mera Acosta","doi":"arxiv-2406.09599","DOIUrl":null,"url":null,"abstract":"The control of the spin degree of freedom is at the heart of spintronics,\nwhich can potentially be achieved by spin-orbit coupling or band topological\neffects. In this paper, we explore another potential controlled mechanism under\ndebate: the spin-deformation coupling (SDC) - the coupling between intrinsic or\nextrinsic geometrical deformations and the spin degree of freedom. We focus on\npolar-deformed thin films or two-dimensional compounds, where the Rashba\nspin-orbit coupling (SOC) is considered as an $SU(2)$ non-Abelian gauge field.\nWe demonstrate that the dynamics between surface and normal electronic degrees\nof freedom can be properly decoupled using the thin-layer approach by\nperforming a suitable gauge transformation, as introduced in the context of\nmany-body correlated systems. Our work leads to three significant results: (i)\ngauge invariance implies that the spin is uncoupled from the surface's\nextrinsic geometry, challenging the common consensus; (ii) the Rashba SOC on a\ncurved surface can be included as an $SU(2)$ non-Abelian gauge field in\ncurvilinear coordinates; and (iii) we identify a previously unnoticed scalar\ngeometrical potential dependent on the Rashba SOC strength. This scalar\npotential, independent of spin, represents the residual effect remaining after\ndecoupling the normal component of the non-Abelian gauge field. The outcomes of\nour work open novel pathways for exploring the manipulation of spin degrees of\nfreedom through the use of the SDC.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The control of the spin degree of freedom is at the heart of spintronics, which can potentially be achieved by spin-orbit coupling or band topological effects. In this paper, we explore another potential controlled mechanism under debate: the spin-deformation coupling (SDC) - the coupling between intrinsic or extrinsic geometrical deformations and the spin degree of freedom. We focus on polar-deformed thin films or two-dimensional compounds, where the Rashba spin-orbit coupling (SOC) is considered as an $SU(2)$ non-Abelian gauge field. We demonstrate that the dynamics between surface and normal electronic degrees of freedom can be properly decoupled using the thin-layer approach by performing a suitable gauge transformation, as introduced in the context of many-body correlated systems. Our work leads to three significant results: (i) gauge invariance implies that the spin is uncoupled from the surface's extrinsic geometry, challenging the common consensus; (ii) the Rashba SOC on a curved surface can be included as an $SU(2)$ non-Abelian gauge field in curvilinear coordinates; and (iii) we identify a previously unnoticed scalar geometrical potential dependent on the Rashba SOC strength. This scalar potential, independent of spin, represents the residual effect remaining after decoupling the normal component of the non-Abelian gauge field. The outcomes of our work open novel pathways for exploring the manipulation of spin degrees of freedom through the use of the SDC.
二维极性材料中的自旋-形变耦合
自旋自由度的控制是自旋电子学的核心,可以通过自旋轨道耦合或带拓扑效应来实现。在本文中,我们将探讨另一种正在争论中的潜在控制机制:自旋形变耦合(SDC)--内在或外在几何形变与自旋自由度之间的耦合。我们的研究重点是极性形变薄膜或二维化合物,其中拉什巴宾轨道耦合(SOC)被视为$SU(2)$非阿贝尔量规场。我们证明了表面自由度和法向电子自由度之间的动力学可以通过执行适当的量规变换,利用薄层方法适当地解耦,这是在多体相关系统的背景下引入的。我们的工作带来了三个重要结果:(i) 度量不变性意味着自旋与表面的固有几何是不耦合的,这对普遍共识提出了挑战;(ii) 弯曲表面上的拉什巴 SOC 可以作为非线性坐标的$SU(2)$ 非阿贝尔量规场;(iii) 我们发现了一个以前未曾注意到的依赖于拉什巴 SOC 强度的标量几何势。这个与自旋无关的标量势代表了非阿贝尔规量场的法向分量解耦之后的剩余效应。我们的工作成果为探索通过使用 SDC 操纵自旋自由度开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信