A new deformation of multiple zeta value

Yoshihiro Takeyama
{"title":"A new deformation of multiple zeta value","authors":"Yoshihiro Takeyama","doi":"arxiv-2406.19641","DOIUrl":null,"url":null,"abstract":"We introduce a new deformation of multiple zeta value (MZV). It has one\nparameter $\\omega$ satisfying $0<\\omega<2$ and recovers MZV in the limit as\n$\\omega \\to +0$. It is defined in the same algebraic framework as a\n$q$-analogue of multiple zeta value ($q$MZV) by using a multiple integral. We\nprove that our deformed multiple zeta value satisfies the double shuffle\nrelations which are satisfied by $q$MZVs. We also prove the extended double\nOhno relations, which are proved for ($q$)MZVs by Hirose, Sato and Seki, by\nusing a multiple integral whose integrand contains the hyperbolic gamma\nfunction due to Ruijsenaars.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new deformation of multiple zeta value (MZV). It has one parameter $\omega$ satisfying $0<\omega<2$ and recovers MZV in the limit as $\omega \to +0$. It is defined in the same algebraic framework as a $q$-analogue of multiple zeta value ($q$MZV) by using a multiple integral. We prove that our deformed multiple zeta value satisfies the double shuffle relations which are satisfied by $q$MZVs. We also prove the extended double Ohno relations, which are proved for ($q$)MZVs by Hirose, Sato and Seki, by using a multiple integral whose integrand contains the hyperbolic gamma function due to Ruijsenaars.
多重泽塔值的新变形
我们引入了多重zeta值(MZV)的一种新变形。它有一个参数$\omega$,满足$0<\omega<2$,并在$\omega \to +0$的极限中恢复 MZV。通过使用多重积分,它被定义在与多重zeta值($q$MZV)类似的$q$代数框架中。我们证明了我们的变形多重zeta值满足$q$MZV所满足的双重洗牌关系。我们还证明了广濑、佐藤和关对 ($q$)MZV 所证明的扩展双奥氏体关系,方法是使用多元积分,其积分项包含由 Ruijsenaars 提出的双曲伽马函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信