Non-Nilpotent Leibniz Algebras with One-Dimensional Derived Subalgebra

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alfonso Di Bartolo, Gianmarco La Rosa, Manuel Mancini
{"title":"Non-Nilpotent Leibniz Algebras with One-Dimensional Derived Subalgebra","authors":"Alfonso Di Bartolo, Gianmarco La Rosa, Manuel Mancini","doi":"10.1007/s00009-024-02679-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study non-nilpotent non-Lie Leibniz <span>\\(\\mathbb {F}\\)</span>-algebras with one-dimensional derived subalgebra, where <span>\\(\\mathbb {F}\\)</span> is a field with <span>\\({\\text {char}}(\\mathbb {F}) \\ne 2\\)</span>. We prove that such an algebra is isomorphic to the direct sum of the two-dimensional non-nilpotent non-Lie Leibniz algebra and an abelian algebra. We denote it by <span>\\(L_n\\)</span>, where <span>\\(n=\\dim _\\mathbb {F}L_n\\)</span>. This generalizes the result found in Demir et al. (Algebras and Representation Theory 19:405-417, 2016), which is only valid when <span>\\(\\mathbb {F}=\\mathbb {C}\\)</span>. Moreover, we find the Lie algebra of derivations, its Lie group of automorphisms and the Leibniz algebra of biderivations of <span>\\(L_n\\)</span>. Eventually, we solve the <i>coquecigrue problem</i> for <span>\\(L_n\\)</span> by integrating it into a Lie rack.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02679-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study non-nilpotent non-Lie Leibniz \(\mathbb {F}\)-algebras with one-dimensional derived subalgebra, where \(\mathbb {F}\) is a field with \({\text {char}}(\mathbb {F}) \ne 2\). We prove that such an algebra is isomorphic to the direct sum of the two-dimensional non-nilpotent non-Lie Leibniz algebra and an abelian algebra. We denote it by \(L_n\), where \(n=\dim _\mathbb {F}L_n\). This generalizes the result found in Demir et al. (Algebras and Representation Theory 19:405-417, 2016), which is only valid when \(\mathbb {F}=\mathbb {C}\). Moreover, we find the Lie algebra of derivations, its Lie group of automorphisms and the Leibniz algebra of biderivations of \(L_n\). Eventually, we solve the coquecigrue problem for \(L_n\) by integrating it into a Lie rack.

Abstract Image

具有一维衍生子代数的非零点莱布尼兹代数
在本文中,我们研究了具有一维派生子代数的非无限非Lie Leibniz \(\mathbb {F}\)代数,其中\(\mathbb {F}\)是一个具有\({\text {char}}(\mathbb {F}) \ne 2\) 的域。我们证明这样一个代数与二维非零能非李-莱布尼兹代数和一个无性代数的直和同构。我们用 \(L_n\) 表示它,其中 \(n=\dim _\mathbb {F}L_n\).这概括了 Demir 等人(《代数与表征理论》19:405-417,2016 年)中的结果,后者只在\(\mathbb {F}=\mathbb {C}\) 时有效。此外,我们还找到了衍生的李代数、它的李自形群以及莱布尼兹双衍生代数。最终,我们通过把它(L_n\)整合到一个李架中,解决了它(L_n\)的共轭问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信