{"title":"An Adaptive Difference Method for Variable-Order Diffusion Equations","authors":"Joaquín Quintana-Murillo, Santos Bravo Yuste","doi":"10.1007/s00009-024-02681-6","DOIUrl":null,"url":null,"abstract":"<p>An adaptive finite difference scheme for variable-order fractional-time subdiffusion equations in the Caputo form is studied. The fractional-time derivative is discretized by the L1 procedure but using nonhomogeneous timesteps. The size of these timesteps is chosen by an adaptive algorithm to keep the local error bounded around a preset value, a value that can be chosen at will. For some types of problems, this adaptive method is much faster than the corresponding usual method with fixed timesteps while keeping the local error of the numerical solution around the preset values. These findings turn out to be similar to those found for constant-order fractional diffusion equations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02681-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An adaptive finite difference scheme for variable-order fractional-time subdiffusion equations in the Caputo form is studied. The fractional-time derivative is discretized by the L1 procedure but using nonhomogeneous timesteps. The size of these timesteps is chosen by an adaptive algorithm to keep the local error bounded around a preset value, a value that can be chosen at will. For some types of problems, this adaptive method is much faster than the corresponding usual method with fixed timesteps while keeping the local error of the numerical solution around the preset values. These findings turn out to be similar to those found for constant-order fractional diffusion equations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.