High Probability Complexity Bounds for Adaptive Step Search Based on Stochastic Oracles

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Billy Jin, Katya Scheinberg, Miaolan Xie
{"title":"High Probability Complexity Bounds for Adaptive Step Search Based on Stochastic Oracles","authors":"Billy Jin, Katya Scheinberg, Miaolan Xie","doi":"10.1137/22m1512764","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2411-2439, September 2024. <br/> Abstract. We consider a step search method for continuous optimization under a stochastic setting where the function values and gradients are available only through inexact probabilistic zeroth- and first-order oracles. (We introduce the term step search for a class of methods, similar to line search, but where step direction can change during the back-tracking procedure.) Unlike the stochastic gradient method and its many variants, the algorithm does not use a prespecified sequence of step sizes but increases or decreases the step size adaptively according to the estimated progress of the algorithm. These oracles capture multiple standard settings including expected loss minimization and zeroth-order optimization. Moreover, our framework is very general and allows the function and gradient estimates to be biased. The proposed algorithm is simple to describe and easy to implement. Under fairly general conditions on the oracles, we derive a high probability tail bound on the iteration complexity of the algorithm when it is applied to nonconvex, convex, and strongly convex (more generally, those satisfying the Polyak-Łojasiewicz (PL) condition) functions. Our analysis strengthens and extends prior results for stochastic step and line search methods.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1512764","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 3, Page 2411-2439, September 2024.
Abstract. We consider a step search method for continuous optimization under a stochastic setting where the function values and gradients are available only through inexact probabilistic zeroth- and first-order oracles. (We introduce the term step search for a class of methods, similar to line search, but where step direction can change during the back-tracking procedure.) Unlike the stochastic gradient method and its many variants, the algorithm does not use a prespecified sequence of step sizes but increases or decreases the step size adaptively according to the estimated progress of the algorithm. These oracles capture multiple standard settings including expected loss minimization and zeroth-order optimization. Moreover, our framework is very general and allows the function and gradient estimates to be biased. The proposed algorithm is simple to describe and easy to implement. Under fairly general conditions on the oracles, we derive a high probability tail bound on the iteration complexity of the algorithm when it is applied to nonconvex, convex, and strongly convex (more generally, those satisfying the Polyak-Łojasiewicz (PL) condition) functions. Our analysis strengthens and extends prior results for stochastic step and line search methods.
基于随机字典的自适应阶跃搜索的高概率复杂性边界
SIAM 优化期刊》,第 34 卷第 3 期,第 2411-2439 页,2024 年 9 月。 摘要我们考虑了一种随机环境下连续优化的阶跃搜索方法,在这种环境下,函数值和梯度只能通过不精确的概率零阶和一阶奥拉茨获得。(我们引入阶跃搜索这一术语来表示一类方法,与直线搜索类似,但在回溯过程中阶跃方向会发生变化)。与随机梯度法及其多种变体不同,该算法不使用预先设定的步长序列,而是根据算法的估计进度自适应地增减步长。这些算法能捕捉到多种标准设置,包括预期损失最小化和零阶优化。此外,我们的框架非常通用,允许函数和梯度估计有偏差。所提出的算法描述简单,易于实现。在相当宽泛的算法条件下,当算法应用于非凸、凸和强凸(更一般地说,满足 Polyak-Łojasiewicz (PL) 条件的函数)函数时,我们得出了算法迭代复杂度的高概率尾界。我们的分析加强并扩展了先前关于随机步长和直线搜索方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信