Siavash Salarian, Behrooz Oskooi, Kamran Mostafaei, Maxim Y. Smirnov
{"title":"Improving the resource modeling results using auxiliary variables in estimation and simulation methods","authors":"Siavash Salarian, Behrooz Oskooi, Kamran Mostafaei, Maxim Y. Smirnov","doi":"10.1007/s12145-024-01383-7","DOIUrl":null,"url":null,"abstract":"<p>Mineral resource modeling is always accompanied by challenges. It is pivotal to increase accuracy and reduce modeling errors in resource modeling. This research aims at improving the resource modeling results using auxiliary variables for estimation and simulation processes. For this purpose, the Darreh-Ziarat iron ore deposit in the west of Iran is selected as a case study. The susceptibility obtained from the 3D inversion result of the magnetometry data is used as a secondary variable in the resource modeling. First, the Fe grade was estimated by utilizing simple kriging (SK) and sequential Gaussian simulation (SGS) techniques. Then, using the auxiliary variable, the Fe grade was estimated by the cokriging (CK) and sequential Gaussian co-simulation (SGCS) methods. Considering various cut-off Fe grades, the average grade of Fe and its resource (tonnage) were calculated, and their results were compared. The mean of kriging variance saw a decline from 0.81 in the SK method to 0.67 in the CK method. This slight decrease in variance can create a profound impact on the resource classification results. The results showed that the use of an auxiliary variable in resource modeling of Darreh-Ziarat led to a reduction in estimation error, an improvement in the classification of mineral resources, and an increase in the number of high-grade Fe blocks. Finally, Fe grade values at different elevation levels were calculated using the four mentioned methods. The results revealed a strong resemblance in shallow and deep parts, while the middle part, which is the high-grade zone, showed more differences.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"11 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01383-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Mineral resource modeling is always accompanied by challenges. It is pivotal to increase accuracy and reduce modeling errors in resource modeling. This research aims at improving the resource modeling results using auxiliary variables for estimation and simulation processes. For this purpose, the Darreh-Ziarat iron ore deposit in the west of Iran is selected as a case study. The susceptibility obtained from the 3D inversion result of the magnetometry data is used as a secondary variable in the resource modeling. First, the Fe grade was estimated by utilizing simple kriging (SK) and sequential Gaussian simulation (SGS) techniques. Then, using the auxiliary variable, the Fe grade was estimated by the cokriging (CK) and sequential Gaussian co-simulation (SGCS) methods. Considering various cut-off Fe grades, the average grade of Fe and its resource (tonnage) were calculated, and their results were compared. The mean of kriging variance saw a decline from 0.81 in the SK method to 0.67 in the CK method. This slight decrease in variance can create a profound impact on the resource classification results. The results showed that the use of an auxiliary variable in resource modeling of Darreh-Ziarat led to a reduction in estimation error, an improvement in the classification of mineral resources, and an increase in the number of high-grade Fe blocks. Finally, Fe grade values at different elevation levels were calculated using the four mentioned methods. The results revealed a strong resemblance in shallow and deep parts, while the middle part, which is the high-grade zone, showed more differences.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.