Pontryagin Maximum Principle for Fractional Delay Differential Equations and Controlled Weakly Singular Volterra Delay Integral Equations

IF 1.9 3区 数学 Q1 MATHEMATICS
Jasarat J. Gasimov, Javad A. Asadzade, Nazim I. Mahmudov
{"title":"Pontryagin Maximum Principle for Fractional Delay Differential Equations and Controlled Weakly Singular Volterra Delay Integral Equations","authors":"Jasarat J. Gasimov, Javad A. Asadzade, Nazim I. Mahmudov","doi":"10.1007/s12346-024-01049-1","DOIUrl":null,"url":null,"abstract":"<p>This article explores two distinct issues. To begin with, we analyze the Pontriagin maximum principle concerning fractional delay differential equations. Furthermore, we investigate the most effective method for resolving the control problem associated with Eq. (1.1) and its corresponding payoff function (1.2). Subsequently, we explore the Pontryagin Maximum principle within the framework of Volterra delay integral equations (1.3). We enhance the outcomes of our investigation by presenting illustrative examples towards the conclusion of the article.\n</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"8 5 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01049-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores two distinct issues. To begin with, we analyze the Pontriagin maximum principle concerning fractional delay differential equations. Furthermore, we investigate the most effective method for resolving the control problem associated with Eq. (1.1) and its corresponding payoff function (1.2). Subsequently, we explore the Pontryagin Maximum principle within the framework of Volterra delay integral equations (1.3). We enhance the outcomes of our investigation by presenting illustrative examples towards the conclusion of the article.

分式延迟微分方程和受控弱奇异 Volterra 延迟积分方程的庞特里亚金最大原则
本文探讨了两个不同的问题。首先,我们分析了有关分数延迟微分方程的庞特里亚金最大原则。此外,我们还研究了解决与式(1.1)及其相应的报酬函数(1.2)相关的控制问题的最有效方法。随后,我们在 Volterra 延迟积分方程 (1.3) 的框架内探讨了庞特里亚金最大原则。在文章的最后,我们通过举例说明来强化我们的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信