Wei-Dong Lin, Yu-Yan Deng, Yang Gao, Ning Wang, Ling-Qiao Liu, Lei Zhang, Peng Wang
{"title":"CAT: A Simple yet Effective Cross-Attention Transformer for One-Shot Object Detection","authors":"Wei-Dong Lin, Yu-Yan Deng, Yang Gao, Ning Wang, Ling-Qiao Liu, Lei Zhang, Peng Wang","doi":"10.1007/s11390-024-1743-6","DOIUrl":null,"url":null,"abstract":"<p>Given a query patch from a novel class, one-shot object detection aims to detect all instances of this class in a target image through the semantic similarity comparison. However, due to the extremely limited guidance in the novel class as well as the unseen appearance difference between the query and target instances, it is difficult to appropriately exploit their semantic similarity and generalize well. To mitigate this problem, we present a universal Cross-Attention Transformer (CAT) module for accurate and efficient semantic similarity comparison in one-shot object detection. The proposed CAT utilizes the transformer mechanism to comprehensively capture bi-directional correspondence between any paired pixels from the query and the target image, which empowers us to sufficiently exploit their semantic characteristics for accurate similarity comparison. In addition, the proposed CAT enables feature dimensionality compression for inference speedup without performance loss. Extensive experiments on three object detection datasets MS-COCO, PASCAL VOC and FSOD under the one-shot setting demonstrate the effectiveness and efficiency of our model, e.g., it surpasses CoAE, a major baseline in this task, by 1.0% in average precision (AP) on MS-COCO and runs nearly 2.5 times faster.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-024-1743-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Given a query patch from a novel class, one-shot object detection aims to detect all instances of this class in a target image through the semantic similarity comparison. However, due to the extremely limited guidance in the novel class as well as the unseen appearance difference between the query and target instances, it is difficult to appropriately exploit their semantic similarity and generalize well. To mitigate this problem, we present a universal Cross-Attention Transformer (CAT) module for accurate and efficient semantic similarity comparison in one-shot object detection. The proposed CAT utilizes the transformer mechanism to comprehensively capture bi-directional correspondence between any paired pixels from the query and the target image, which empowers us to sufficiently exploit their semantic characteristics for accurate similarity comparison. In addition, the proposed CAT enables feature dimensionality compression for inference speedup without performance loss. Extensive experiments on three object detection datasets MS-COCO, PASCAL VOC and FSOD under the one-shot setting demonstrate the effectiveness and efficiency of our model, e.g., it surpasses CoAE, a major baseline in this task, by 1.0% in average precision (AP) on MS-COCO and runs nearly 2.5 times faster.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas