Signed zero sum problems for metacyclic group

Pub Date : 2024-07-03 DOI:10.1007/s10998-024-00593-2
B. K. Moriya
{"title":"Signed zero sum problems for metacyclic group","authors":"B. K. Moriya","doi":"10.1007/s10998-024-00593-2","DOIUrl":null,"url":null,"abstract":"<p>Let <i>A</i> be a nonempty subset of the integers and <i>G</i> a finite group written multiplicatively. The constant <span>\\(\\eta _A(G)\\)</span> (<span>\\(s_A(G)\\)</span>) is defined to be the smallest positive integer <i>t</i> such that any sequence of length <i>t</i> of elements of <i>G</i> contains a nonempty <i>A</i>-weighted product one subsequence (that is, the terms of the subsequence could be ordered so that their <i>A</i>-weighted product is the multiplicative identity of the group <i>G</i>) of length at most <span>\\(\\exp (G)\\)</span> (of length <span>\\(\\exp (G)\\)</span>). In this note, we shall calculate the value of <span>\\(\\eta _\\pm (G),D_\\pm (G),E_\\pm (G) \\text{ and } s_\\pm (G)\\)</span> for some metacyclic groups. In 2007, Gao et al. conjectured that <span>\\(s(G)=\\eta (G)+\\exp (G)-1\\)</span> holds for any finite abelian group <i>G</i> (see Gao et al. in Integers 7:A21, 2007). We will prove that this conjecture is true for some metacyclic groups. Furthermore, we study the Harborth constant <span>\\(\\mathfrak {g}_\\pm (G)\\)</span>, where <i>G</i> is a group among one specific class of metacyclic groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00593-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a nonempty subset of the integers and G a finite group written multiplicatively. The constant \(\eta _A(G)\) (\(s_A(G)\)) is defined to be the smallest positive integer t such that any sequence of length t of elements of G contains a nonempty A-weighted product one subsequence (that is, the terms of the subsequence could be ordered so that their A-weighted product is the multiplicative identity of the group G) of length at most \(\exp (G)\) (of length \(\exp (G)\)). In this note, we shall calculate the value of \(\eta _\pm (G),D_\pm (G),E_\pm (G) \text{ and } s_\pm (G)\) for some metacyclic groups. In 2007, Gao et al. conjectured that \(s(G)=\eta (G)+\exp (G)-1\) holds for any finite abelian group G (see Gao et al. in Integers 7:A21, 2007). We will prove that this conjecture is true for some metacyclic groups. Furthermore, we study the Harborth constant \(\mathfrak {g}_\pm (G)\), where G is a group among one specific class of metacyclic groups.

分享
查看原文
元环组的有符号零和问题
让 A 是整数的一个非空子集,G 是一个乘法写成的有限群。常数 \(\eta _A(G)\) (\(s_A(G)\)) 被定义为最小的正整数 t,使得 G 中任何长度为 t 的元素序列都包含一个非空的 A 加权乘积子序列(也就是说,子序列的项可以被排序,使得它们的 A 加权乘积是群的乘法同一性)、长度为 \(\exp (G)\) (长度为 \(\exp (G)\) )的子序列(即子序列的项可以排序,以便它们的 A 加权乘积是组 G 的乘法同一性)。在本说明中,我们将计算一些元循环群的\(\eta _\pm (G),D_\pm (G),E_\pm (G) \text{ and } s_\pm (G)\) 的值。2007 年,Gao 等人猜想对于任何有限无性群 G,\(s(G)=\eta (G)+\exp (G)-1\) 都成立(见 Gao 等人在 Integers 7:A21, 2007 上的文章)。我们将证明这一猜想对于某些元循环群是成立的。此外,我们还将研究哈伯斯常数(\mathfrak {g}_\pm (G)\),其中 G 是元环群中一个特定类别的群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信