Nonlinear elliptic eigenvalue problems in cylindrical domains becoming unbounded in one direction

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rama Rawat, Haripada Roy, Prosenjit Roy
{"title":"Nonlinear elliptic eigenvalue problems in cylindrical domains becoming unbounded in one direction","authors":"Rama Rawat, Haripada Roy, Prosenjit Roy","doi":"10.3233/asy-241907","DOIUrl":null,"url":null,"abstract":"The aim of this work is to characterize the asymptotic behaviour of the first eigenfunction of the generalised p-Laplace operator with mixed (Dirichlet and Neumann) boundary conditions in cylindrical domains when the length of the cylindrical domains tends to infinity. This generalises an earlier work of Chipot et al. (Asymptot. Anal. 85(3–4) (2013) 199–227) where the linear case p=2 is studied. Asymptotic behavior of all the higher eigenvalues of the linear case and the second eigenvalues of general case (using topological degree) for such problems is also studied.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241907","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this work is to characterize the asymptotic behaviour of the first eigenfunction of the generalised p-Laplace operator with mixed (Dirichlet and Neumann) boundary conditions in cylindrical domains when the length of the cylindrical domains tends to infinity. This generalises an earlier work of Chipot et al. (Asymptot. Anal. 85(3–4) (2013) 199–227) where the linear case p=2 is studied. Asymptotic behavior of all the higher eigenvalues of the linear case and the second eigenvalues of general case (using topological degree) for such problems is also studied.
圆柱域中在一个方向上变得无界的非线性椭圆特征值问题
这项工作的目的是描述当圆柱形域的长度趋于无穷大时,在圆柱形域中具有混合(迪里希特和诺伊曼)边界条件的广义 p-Laplace 算子的第一个特征函数的渐近行为。这概括了 Chipot 等人的早期研究成果(Asymptot.Anal.85(3-4) (2013) 199-227)的研究,其中研究了 p=2 的线性情况。此外,还研究了线性情况下所有高特征值的渐近行为,以及一般情况下的第二特征值(使用拓扑度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信