{"title":"Difference analogues of the second main theorem for holomorphic curves and arbitrary families of hypersurfaces in projective varieties","authors":"T. B. Cao, N. V. Thin, S. D. Quang","doi":"10.1007/s10476-024-00036-7","DOIUrl":null,"url":null,"abstract":"<div><p>Our goal in this paper is to establish some difference analogue of second main theorems for holomorphic curves into projective varieties intersecting arbitrary families of <i>c</i>-periodical hypersurfaces (fixed or moving) with truncated counting functions in various cases. Our results generalize and improve the previous results in this topic.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00036-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Our goal in this paper is to establish some difference analogue of second main theorems for holomorphic curves into projective varieties intersecting arbitrary families of c-periodical hypersurfaces (fixed or moving) with truncated counting functions in various cases. Our results generalize and improve the previous results in this topic.