Elementary proof of QAOA convergence

IF 2.8 2区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Lennart Binkowski, Gereon Koßmann, Timo Ziegler and René Schwonnek
{"title":"Elementary proof of QAOA convergence","authors":"Lennart Binkowski, Gereon Koßmann, Timo Ziegler and René Schwonnek","doi":"10.1088/1367-2630/ad59bb","DOIUrl":null,"url":null,"abstract":"The quantum alternating operator ansatz (QAOA) and its predecessor, the quantum approximate optimization algorithm, are one of the most widely used quantum algorithms for solving combinatorial optimization problems. However, as there is yet no rigorous proof of convergence for the QAOA, we provide one in this paper. The proof involves retracing the connection between the quantum adiabatic algorithm and the QAOA, and naturally suggests a refined definition of the ‘phase separator’ and ‘mixer’ keywords.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"17 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad59bb","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The quantum alternating operator ansatz (QAOA) and its predecessor, the quantum approximate optimization algorithm, are one of the most widely used quantum algorithms for solving combinatorial optimization problems. However, as there is yet no rigorous proof of convergence for the QAOA, we provide one in this paper. The proof involves retracing the connection between the quantum adiabatic algorithm and the QAOA, and naturally suggests a refined definition of the ‘phase separator’ and ‘mixer’ keywords.
QAOA 收敛性的基本证明
量子交替算子解析(QAOA)及其前身量子近似优化算法是解决组合优化问题最广泛使用的量子算法之一。然而,由于 QAOA 还没有严格的收敛性证明,我们在本文中提供了一个证明。该证明涉及追溯量子绝热算法与 QAOA 之间的联系,并自然地提出了 "相分离器 "和 "混合器 "这两个关键词的细化定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Physics
New Journal of Physics 物理-物理:综合
CiteScore
6.20
自引率
3.00%
发文量
504
审稿时长
3.1 months
期刊介绍: New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信