Maximal Line Digraphs

Quentin JaphetDAVID, Dimitri WatelIP Paris, SAMOVAR, SOP - SAMOVAR, ENSIIE, Dominique BarthDAVID, Marc-Antoine WeisserGALaC
{"title":"Maximal Line Digraphs","authors":"Quentin JaphetDAVID, Dimitri WatelIP Paris, SAMOVAR, SOP - SAMOVAR, ENSIIE, Dominique BarthDAVID, Marc-Antoine WeisserGALaC","doi":"arxiv-2406.05141","DOIUrl":null,"url":null,"abstract":"A line digraph $L(G) = (A, E)$ is the digraph constructed from the digraph $G\n= (V, A)$ such that there is an arc $(a,b)$ in $L(G)$ if the terminal node of\n$a$ in $G$ is the initial node of $b$. The maximum number of arcs in a line\ndigraph with $m$ nodes is $(m/2)^2 + (m/2)$ if $m$ is even, and $((m - 1)/2)^2\n+ m - 1$ otherwise. For $m \\geq 7$, there is only one line digraph with as many\narcs if $m$ is even, and if $m$ is odd, there are two line digraphs, each being\nthe transpose of the other.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"207 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A line digraph $L(G) = (A, E)$ is the digraph constructed from the digraph $G = (V, A)$ such that there is an arc $(a,b)$ in $L(G)$ if the terminal node of $a$ in $G$ is the initial node of $b$. The maximum number of arcs in a line digraph with $m$ nodes is $(m/2)^2 + (m/2)$ if $m$ is even, and $((m - 1)/2)^2 + m - 1$ otherwise. For $m \geq 7$, there is only one line digraph with as many arcs if $m$ is even, and if $m$ is odd, there are two line digraphs, each being the transpose of the other.
最大线段图
线段图 $L(G) = (A, E)$ 是由线段图 $G= (V, A)$ 构造的线段图,如果 $G$ 中 $a$ 的终端节点是 $b$ 的初始节点,则在 $L(G)$ 中存在弧 $(a,b)$。如果 $m$ 是偶数,具有 $m$ 节点的线段图中弧的最大数目为 $(m/2)^2 + (m/2)$,否则为 $((m - 1)/2)^2+ m - 1$。对于 $m \geq 7$,如果 $m$ 是偶数,则只有一个具有同样多节点的线段图;如果 $m$ 是奇数,则有两个线段图,每个都是另一个的转置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信