On Kolmogorov Structure Functions

Samuel Epstein
{"title":"On Kolmogorov Structure Functions","authors":"Samuel Epstein","doi":"arxiv-2406.05903","DOIUrl":null,"url":null,"abstract":"All strings with low mutual information with the halting sequence will have\nflat Kolmogorov Structure Functions, in the context of Algorithmic Statistics.\nAssuming the Independence Postulate, strings with non-negligible information\nwith the halting sequence are purely mathematical constructions, and cannot be\nfound in nature. Thus Algorithmic Statistics does not study strings in the\nphysical world. This leads to the general thesis that two part codes require\nlimitations as shown in the Minimum Description Length Principle. We also\ndiscuss issues with set-restricted Kolmogorov Structure Functions.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All strings with low mutual information with the halting sequence will have flat Kolmogorov Structure Functions, in the context of Algorithmic Statistics. Assuming the Independence Postulate, strings with non-negligible information with the halting sequence are purely mathematical constructions, and cannot be found in nature. Thus Algorithmic Statistics does not study strings in the physical world. This leads to the general thesis that two part codes require limitations as shown in the Minimum Description Length Principle. We also discuss issues with set-restricted Kolmogorov Structure Functions.
关于柯尔莫哥洛夫结构函数
在《算法统计》中,所有与停止序列互信息较低的字符串都具有平坦的科尔莫哥洛夫结构函数。假定独立公设成立,与停止序列互信息不可忽略的字符串都是纯数学构造,不可能在自然界中找到。因此,《算法统计》并不研究物理世界中的字符串。这就引出了一个一般性的论点,即两部分代码需要限制,正如最小描述长度原则所显示的那样。我们还讨论了限制集合的柯尔莫哥洛夫结构函数的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信