Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs

Arnaud Casteigts, Nils Morawietz, Petra Wolf
{"title":"Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs","authors":"Arnaud Casteigts, Nils Morawietz, Petra Wolf","doi":"arxiv-2406.19514","DOIUrl":null,"url":null,"abstract":"A temporal graph is a graph whose edges only appear at certain points in\ntime. Reachability in these graphs is defined in terms of paths that traverse\nthe edges in chronological order (temporal paths). This form of reachability is\nneither symmetric nor transitive, the latter having important consequences on\nthe computational complexity of even basic questions, such as computing\ntemporal connected components. In this paper, we introduce several parameters\nthat capture how far a temporal graph $\\mathcal{G}$ is from being transitive,\nnamely, \\emph{vertex-deletion distance to transitivity} and\n\\emph{arc-modification distance to transitivity}, both being applied to the\nreachability graph of $\\mathcal{G}$. We illustrate the impact of these\nparameters on the temporal connected component problem, obtaining several\ntractability results in terms of fixed-parameter tractability and polynomial\nkernels. Significantly, these results are obtained without restrictions of the\nunderlying graph, the snapshots, or the lifetime of the input graph. As such,\nour results isolate the impact of non-transitivity and confirm the key role\nthat it plays in the hardness of temporal graph problems.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A temporal graph is a graph whose edges only appear at certain points in time. Reachability in these graphs is defined in terms of paths that traverse the edges in chronological order (temporal paths). This form of reachability is neither symmetric nor transitive, the latter having important consequences on the computational complexity of even basic questions, such as computing temporal connected components. In this paper, we introduce several parameters that capture how far a temporal graph $\mathcal{G}$ is from being transitive, namely, \emph{vertex-deletion distance to transitivity} and \emph{arc-modification distance to transitivity}, both being applied to the reachability graph of $\mathcal{G}$. We illustrate the impact of these parameters on the temporal connected component problem, obtaining several tractability results in terms of fixed-parameter tractability and polynomial kernels. Significantly, these results are obtained without restrictions of the underlying graph, the snapshots, or the lifetime of the input graph. As such, our results isolate the impact of non-transitivity and confirm the key role that it plays in the hardness of temporal graph problems.
距离与传递性:驯服时态图中可达性的新参数
时序图是一种边只在特定时间点出现的图。这些图中的可达性是根据按时间顺序遍历边的路径(时间路径)来定义的。这种形式的可达性既不是对称的,也不是传递的,后者甚至对计算时空连接成分等基本问题的计算复杂性都有重要影响。在本文中,我们引入了几个参数来捕捉时空图 $\mathcal{G}$ 距离传递性有多远,即 \emph{vertex-deletion distance to transitivity} 和 \emph{arc-modification distance to transitivity},这两个参数都应用于 $\mathcal{G}$ 的可达性图。我们说明了这些参数对时间连通分量问题的影响,并从固定参数可计算性和多项式核的角度得到了几个可计算性结果。值得注意的是,这些结果的获得不受底层图、快照或输入图生命周期的限制。因此,我们的结果隔离了非传递性的影响,并证实了它在时序图问题的难易程度中扮演的关键角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信