An XOR Lemma for Deterministic Communication Complexity

Siddharth Iyer, Anup Rao
{"title":"An XOR Lemma for Deterministic Communication Complexity","authors":"Siddharth Iyer, Anup Rao","doi":"arxiv-2407.01802","DOIUrl":null,"url":null,"abstract":"We prove a lower bound on the communication complexity of computing the\n$n$-fold xor of an arbitrary function $f$, in terms of the communication\ncomplexity and rank of $f$. We prove that $D(f^{\\oplus n}) \\geq n \\cdot\n\\Big(\\frac{\\Omega(D(f))}{\\log \\mathsf{rk}(f)} -\\log \\mathsf{rk}(f)\\Big )$,\nwhere here $D(f), D(f^{\\oplus n})$ represent the deterministic communication\ncomplexity, and $\\mathsf{rk}(f)$ is the rank of $f$. Our methods involve a new\nway to use information theory to reason about deterministic communication\ncomplexity.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a lower bound on the communication complexity of computing the $n$-fold xor of an arbitrary function $f$, in terms of the communication complexity and rank of $f$. We prove that $D(f^{\oplus n}) \geq n \cdot \Big(\frac{\Omega(D(f))}{\log \mathsf{rk}(f)} -\log \mathsf{rk}(f)\Big )$, where here $D(f), D(f^{\oplus n})$ represent the deterministic communication complexity, and $\mathsf{rk}(f)$ is the rank of $f$. Our methods involve a new way to use information theory to reason about deterministic communication complexity.
确定性通信复杂性的 XOR 定理
我们用通信复杂度和 $f$ 的秩证明了计算任意函数 $f$ 的 $n$ 折 xor 的通信复杂度下限。我们证明了$D(f^{\oplus n}) \geq n \cdot\Big(\frac{\Omega(D(f))}{log \mathsf{rk}(f)} -\log \mathsf{rk}(f)\Big )$、其中 $D(f)、D(f^{\oplus n})$ 表示确定性通信复杂度,$mathsf{rk}(f)$ 是 $f$ 的秩。我们的方法是利用信息论推理确定性通信复杂性的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信