Multigrid-Augmented Deep Learning Preconditioners for the Helmholtz Equation Using Compact Implicit Layers

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bar Lerer, Ido Ben-Yair, Eran Treister
{"title":"Multigrid-Augmented Deep Learning Preconditioners for the Helmholtz Equation Using Compact Implicit Layers","authors":"Bar Lerer, Ido Ben-Yair, Eran Treister","doi":"10.1137/23m1583302","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Ahead of Print. <br/> Abstract. We present a deep learning–based iterative approach to solve the discrete heterogeneous Helmholtz equation for high wavenumbers. Combining classical iterative multigrid solvers and convolutional neural networks (CNNs) via preconditioning, we obtain a faster, learned neural solver that scales better than a standard multigrid solver. Our approach offers three main contributions over previous neural methods of this kind. First, we construct a multilevel U-Net-like encoder-solver CNN with an implicit layer on the coarsest grid of the U-Net, where convolution kernels are inverted. This alleviates the field of view problem in CNNs and allows better scalability. Second, we improve upon the previous CNN preconditioner in terms of the number of parameters, computation time, and convergence rates. Third, we propose a multiscale training approach that enables the network to scale to problems of previously unseen dimensions while still maintaining a reasonable training procedure. Our encoder-solver architecture can be used to generalize over different slowness models of various difficulties and is efficient at solving for many right-hand sides per slowness model. We demonstrate the benefits of our novel architecture with numerical experiments on various heterogeneous two-dimensional problems at high wavenumbers.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1583302","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Ahead of Print.
Abstract. We present a deep learning–based iterative approach to solve the discrete heterogeneous Helmholtz equation for high wavenumbers. Combining classical iterative multigrid solvers and convolutional neural networks (CNNs) via preconditioning, we obtain a faster, learned neural solver that scales better than a standard multigrid solver. Our approach offers three main contributions over previous neural methods of this kind. First, we construct a multilevel U-Net-like encoder-solver CNN with an implicit layer on the coarsest grid of the U-Net, where convolution kernels are inverted. This alleviates the field of view problem in CNNs and allows better scalability. Second, we improve upon the previous CNN preconditioner in terms of the number of parameters, computation time, and convergence rates. Third, we propose a multiscale training approach that enables the network to scale to problems of previously unseen dimensions while still maintaining a reasonable training procedure. Our encoder-solver architecture can be used to generalize over different slowness models of various difficulties and is efficient at solving for many right-hand sides per slowness model. We demonstrate the benefits of our novel architecture with numerical experiments on various heterogeneous two-dimensional problems at high wavenumbers.
使用紧凑内隐层的亥姆霍兹方程多网格增强深度学习预处理器
SIAM 科学计算期刊》,提前印刷。 摘要我们提出了一种基于深度学习的迭代方法,用于求解高波数的离散异质亥姆霍兹方程。通过预处理将经典迭代多网格求解器与卷积神经网络(CNN)相结合,我们获得了一种更快的学习神经求解器,其扩展性优于标准多网格求解器。与之前的同类神经方法相比,我们的方法有三大贡献。首先,我们构建了一个类似 U-Net 的多层次编码器求解 CNN,在 U-Net 的最粗网格上有一个隐含层,其中的卷积核是反转的。这缓解了 CNN 的视场问题,使其具有更好的可扩展性。其次,我们在参数数量、计算时间和收敛率方面改进了之前的 CNN 预处理。第三,我们提出了一种多尺度训练方法,使网络能够扩展到以前从未见过的维度问题,同时仍然保持合理的训练程序。我们的编码器-求解器架构可用于泛化不同难度的慢度模型,并能高效地求解每个慢度模型的多个右手边。我们通过对高波数下各种异质二维问题的数值实验,证明了我们的新架构的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信