{"title":"Trends and variations of tropical cyclone precipitation contributions in the Indochina Peninsula","authors":"Thi-Ngoc-Huyen Ho, S.-Y. Simon Wang, Jin-Ho Yoon","doi":"10.1007/s00704-024-05084-5","DOIUrl":null,"url":null,"abstract":"<p>This study conducts a comprehensive analysis of the influence of tropical cyclones on precipitation variations in Indochina, examining Vietnam, Laos, and Cambodia, while exploring their connection with evolving climatic variables. Covering a span of four decades (1979–2021) and integrating daily precipitation records with climatic datasets, the research elucidates tropical cyclone’s contributions to the annual precipitation across distinct regions, revealing percentages of 27%, 16%, and 6% in Vietnam, Laos, and Cambodia, respectively. Spatial distribution mapping highlights concentrated intensities in central Vietnam, central Laos, and southern Cambodia. Additionally, an upward trend in Vietnam’s precipitation, as a representative measure of the entire region, is observed over the study duration, while its variability exhibits marginal correlations with inter-annual and decadal-scale climatic indices. The upward trend aligns with increased precipitable water over Indochina and open oceans, increased sea surface temperatures, reinforced atmospheric low-pressure systems, and intensified westerly wind patterns post-2000. These findings underscore the complex interplay between climate variables and Indochina’s precipitation dynamics, suggesting implications for disaster management and strategies to adapt to climate change.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"229 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00704-024-05084-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducts a comprehensive analysis of the influence of tropical cyclones on precipitation variations in Indochina, examining Vietnam, Laos, and Cambodia, while exploring their connection with evolving climatic variables. Covering a span of four decades (1979–2021) and integrating daily precipitation records with climatic datasets, the research elucidates tropical cyclone’s contributions to the annual precipitation across distinct regions, revealing percentages of 27%, 16%, and 6% in Vietnam, Laos, and Cambodia, respectively. Spatial distribution mapping highlights concentrated intensities in central Vietnam, central Laos, and southern Cambodia. Additionally, an upward trend in Vietnam’s precipitation, as a representative measure of the entire region, is observed over the study duration, while its variability exhibits marginal correlations with inter-annual and decadal-scale climatic indices. The upward trend aligns with increased precipitable water over Indochina and open oceans, increased sea surface temperatures, reinforced atmospheric low-pressure systems, and intensified westerly wind patterns post-2000. These findings underscore the complex interplay between climate variables and Indochina’s precipitation dynamics, suggesting implications for disaster management and strategies to adapt to climate change.
期刊介绍:
Theoretical and Applied Climatology covers the following topics:
- climate modeling, climatic changes and climate forecasting, micro- to mesoclimate, applied meteorology as in agro- and forestmeteorology, biometeorology, building meteorology and atmospheric radiation problems as they relate to the biosphere
- effects of anthropogenic and natural aerosols or gaseous trace constituents
- hardware and software elements of meteorological measurements, including techniques of remote sensing