Ki T. Wolf, Joel T. Clemmer, Michael L. Hobbs, Michael Kaneshige, Dan S. Bolintineanu, Judith A. Brown
{"title":"Investigation of thermal damage in explosive bridgewire detonators via discrete element method simulations","authors":"Ki T. Wolf, Joel T. Clemmer, Michael L. Hobbs, Michael Kaneshige, Dan S. Bolintineanu, Judith A. Brown","doi":"10.1002/prep.202300305","DOIUrl":null,"url":null,"abstract":"Exploding bridgewire (EBW) detonators are used to rapidly and reliably initiate energetic reactions by exploding a bridgewire via Joule heating. While the mechanisms of EBW detonators have been studied extensively in nominal conditions, comparatively few studies have addressed thermally damaged detonator operability. We present a mesoscale simulation study of thermal damage in a representative EBW detonator, using discrete element method (DEM) simulations that explicitly account for individual particles in the pressed explosive powder. We use a simplified model of melting, where solid spherical particles undergo uniform shrinking, and fluid dynamics are ignored. The subsequent settling of particles results in the formation of a gap between the solid powder and the bridgewire, which we study under different conditions. In particular, particle cohesion has a significant effect on gap formation and settling behavior, where sufficiently high cohesion leads to coalescence of particles into a free‐standing pellet. This behavior is qualitatively compared to experimental visualization data, and simulations are shown to capture several key changes in pellet shape. We derive a minimum and maximum limit on gap formation during melting using simple geometric arguments. In the absence of cohesion, results agree with the maximum gap size. With increasing cohesion, the gap size decreases, eventually saturating at the minimum limit. We present results for different combinations of interparticle cohesion and detonator orientations with respect to gravity, demonstrating the complex behavior of these systems and the potential for DEM simulations to capture a range of scenarios.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300305","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Exploding bridgewire (EBW) detonators are used to rapidly and reliably initiate energetic reactions by exploding a bridgewire via Joule heating. While the mechanisms of EBW detonators have been studied extensively in nominal conditions, comparatively few studies have addressed thermally damaged detonator operability. We present a mesoscale simulation study of thermal damage in a representative EBW detonator, using discrete element method (DEM) simulations that explicitly account for individual particles in the pressed explosive powder. We use a simplified model of melting, where solid spherical particles undergo uniform shrinking, and fluid dynamics are ignored. The subsequent settling of particles results in the formation of a gap between the solid powder and the bridgewire, which we study under different conditions. In particular, particle cohesion has a significant effect on gap formation and settling behavior, where sufficiently high cohesion leads to coalescence of particles into a free‐standing pellet. This behavior is qualitatively compared to experimental visualization data, and simulations are shown to capture several key changes in pellet shape. We derive a minimum and maximum limit on gap formation during melting using simple geometric arguments. In the absence of cohesion, results agree with the maximum gap size. With increasing cohesion, the gap size decreases, eventually saturating at the minimum limit. We present results for different combinations of interparticle cohesion and detonator orientations with respect to gravity, demonstrating the complex behavior of these systems and the potential for DEM simulations to capture a range of scenarios.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.