Zi‐Chao Wang, Jie Yao, Feng‐Wei Guo, Shuang Li, Yi‐Long Xu, Jun‐Hui Liu, Chen Shen, Xue‐Yong Guo, Shi Yan, Jian‐Xin Nie
{"title":"Mechanical response characteristics of HMX crystals under resonant acoustic mixing","authors":"Zi‐Chao Wang, Jie Yao, Feng‐Wei Guo, Shuang Li, Yi‐Long Xu, Jun‐Hui Liu, Chen Shen, Xue‐Yong Guo, Shi Yan, Jian‐Xin Nie","doi":"10.1002/prep.202400095","DOIUrl":null,"url":null,"abstract":"Understanding the mechanical response characteristics and determining the optimized process conditions is critical to mitigate crystal impacts during resonant acoustic mixing (RAM). Therefore, high‐melting explosive (HMX) crystal collisions with container walls under different RAM accelerations were investigated through simulations and experiments. The HMX crystal damages after RAM were assessed using microscopic imaging, small‐angle X‐ray scattering, and Brunauer–Emmett–Teller tests. Results show that crystal fractures observed in steel containers can be prevented by using low‐modulus polytetrafluoroethylene containers. Rough containers reduce internal damage but increase surface abrasion. Lower RAM accelerations, shorter RAM durations, and low‐modulus containers can mitigate HMX crystal damage.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202400095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the mechanical response characteristics and determining the optimized process conditions is critical to mitigate crystal impacts during resonant acoustic mixing (RAM). Therefore, high‐melting explosive (HMX) crystal collisions with container walls under different RAM accelerations were investigated through simulations and experiments. The HMX crystal damages after RAM were assessed using microscopic imaging, small‐angle X‐ray scattering, and Brunauer–Emmett–Teller tests. Results show that crystal fractures observed in steel containers can be prevented by using low‐modulus polytetrafluoroethylene containers. Rough containers reduce internal damage but increase surface abrasion. Lower RAM accelerations, shorter RAM durations, and low‐modulus containers can mitigate HMX crystal damage.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.