Rigidity of Volterra-type integral operators on Hardy spaces of the unit ball

IF 1.1 2区 数学 Q1 MATHEMATICS
Santeri Miihkinen, Jordi Pau, Antti Perälä, Maofa Wang
{"title":"Rigidity of Volterra-type integral operators on Hardy spaces of the unit ball","authors":"Santeri Miihkinen, Jordi Pau, Antti Perälä, Maofa Wang","doi":"10.1007/s43037-024-00366-6","DOIUrl":null,"url":null,"abstract":"<p>We establish that the Volterra-type integral operator <span>\\(J_b\\)</span> on the Hardy spaces <span>\\(H^p\\)</span> of the unit ball <span>\\({\\mathbb {B}}^n\\)</span> exhibits a rather strong rigid behavior. More precisely, we show that the compactness, strict singularity and <span>\\(\\ell ^p\\)</span>-singularity of <span>\\(J_b\\)</span> are equivalent on <span>\\(H^p\\)</span> for any <span>\\(1 \\le p &lt; \\infty \\)</span>. Moreover, we show that the operator <span>\\(J_b\\)</span> acting on <span>\\(H^p\\)</span> cannot fix an isomorphic copy of <span>\\(\\ell ^2\\)</span> when <span>\\(p \\ne 2.\\)</span></p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"177 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00366-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish that the Volterra-type integral operator \(J_b\) on the Hardy spaces \(H^p\) of the unit ball \({\mathbb {B}}^n\) exhibits a rather strong rigid behavior. More precisely, we show that the compactness, strict singularity and \(\ell ^p\)-singularity of \(J_b\) are equivalent on \(H^p\) for any \(1 \le p < \infty \). Moreover, we show that the operator \(J_b\) acting on \(H^p\) cannot fix an isomorphic copy of \(\ell ^2\) when \(p \ne 2.\)

单位球的哈代空间上伏特拉型积分算子的刚性
我们发现,单位球 \({\mathbb {B}}^n\) 的哈代空间 \(H^p\) 上的 Volterra 型积分算子 \(J_b\) 表现出相当强的刚性行为。更准确地说,我们证明了对于任意(1 \le p < \infty \),J_b\ 的紧凑性、严格奇异性和(\ell ^p\)奇异性在(H^p\)上是等价的。此外,我们还证明,当(p (ne 2.\)时,作用在(H^p\)上的算子(J_b\)不能固定(ell ^2\)的同构副本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信