Towards effective urban region-of-interest demand modeling via graph representation learning

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Pu Wang, Jingya Sun, Wei Chen, Lei Zhao
{"title":"Towards effective urban region-of-interest demand modeling via graph representation learning","authors":"Pu Wang, Jingya Sun, Wei Chen, Lei Zhao","doi":"10.1007/s10618-024-01049-4","DOIUrl":null,"url":null,"abstract":"<p>Identifying the region’s functionalities and what the specific Point-of-Interest (POI) needs is essential for effective urban planning. However, due to the diversified and ambiguity nature of urban regions, there are still some significant challenges to be resolved in urban POI demand analysis. To this end, we propose a novel framework, in which Region-of-Interest Demand Modeling is enhanced through the graph representation learning, namely Variational Multi-graph Auto-encoding Fusion, aiming to effectively predict the ROI demand from both the POI level and category level. Specifically, we first divide the urban area into spatially differentiated neighborhood regions, extract the corresponding multi-dimensional natures, and then generate the Spatial-Attributed Region Graph (SARG). After that, we introduce an unsupervised multi-graph based variational auto-encoder to map regional profiles of SARG into latent space, and further retrieve the dynamic latent representations through probabilistic sampling and global fusing. Additionally, during the training process, a spatio-temporal constrained Bayesian algorithm is adopted to infer the destination POIs. Finally, extensive experiments are conducted on real-world dataset, which demonstrate our model significantly outperforms state-of-the-art baselines.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"73 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01049-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying the region’s functionalities and what the specific Point-of-Interest (POI) needs is essential for effective urban planning. However, due to the diversified and ambiguity nature of urban regions, there are still some significant challenges to be resolved in urban POI demand analysis. To this end, we propose a novel framework, in which Region-of-Interest Demand Modeling is enhanced through the graph representation learning, namely Variational Multi-graph Auto-encoding Fusion, aiming to effectively predict the ROI demand from both the POI level and category level. Specifically, we first divide the urban area into spatially differentiated neighborhood regions, extract the corresponding multi-dimensional natures, and then generate the Spatial-Attributed Region Graph (SARG). After that, we introduce an unsupervised multi-graph based variational auto-encoder to map regional profiles of SARG into latent space, and further retrieve the dynamic latent representations through probabilistic sampling and global fusing. Additionally, during the training process, a spatio-temporal constrained Bayesian algorithm is adopted to infer the destination POIs. Finally, extensive experiments are conducted on real-world dataset, which demonstrate our model significantly outperforms state-of-the-art baselines.

Abstract Image

通过图表示学习实现有效的城市兴趣区域需求建模
确定区域的功能和特定兴趣点(POI)的需求对于有效的城市规划至关重要。然而,由于城市区域的多样性和模糊性,城市兴趣点需求分析仍有一些重大挑战有待解决。为此,我们提出了一个新颖的框架,通过图表示学习(即变异多图自动编码融合)来增强兴趣区域需求建模,旨在从 POI 层面和类别层面有效预测 ROI 需求。具体来说,我们首先将城市区域划分为空间上不同的邻近区域,提取相应的多维性质,然后生成空间属性区域图(SARG)。然后,我们引入基于无监督多图的变异自动编码器,将 SARG 的区域轮廓映射到潜空间,并通过概率采样和全局融合进一步检索动态潜表征。此外,在训练过程中,还采用了时空约束贝叶斯算法来推断目的地 POI。最后,我们在真实世界的数据集上进行了大量实验,结果表明我们的模型明显优于最先进的基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信