Le Ba Tran, Quynh Anh Nguyen Thi, Nhat Huy Nguyen, Tri Thich Le, Phuoc Toan Phan, Surapol Padungthon, Trung Thanh Nguyen
{"title":"Synthesis of calcium and iron oxide/hydroxide bifunctional materials for treating phosphate and hardness in water","authors":"Le Ba Tran, Quynh Anh Nguyen Thi, Nhat Huy Nguyen, Tri Thich Le, Phuoc Toan Phan, Surapol Padungthon, Trung Thanh Nguyen","doi":"10.1007/s43153-024-00482-8","DOIUrl":null,"url":null,"abstract":"<p>This article focuses on synthesizing dual-functional adsorption-ion exchange material (Fe-Ca/225H) by precipitation method on 225H cation exchange resin for the treatment of phosphate and hardness in water. Materials were analyzed through methods such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction studies (XRD), and scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). For the phosphate adsorption, suitable conditions were experimentally found to include reaction time (48 h), pH (6.5), adsorbent dosage (10 g/L), and HCO<sub>3</sub><sup>−</sup> ions as the most impact ion on the phosphate adsorption. When calcium and magnesium were present in a solution containing phosphate, the phosphate adsorption capacity increased by 1.24 times. This was due to the combination of calcium and magnesium with phosphate on the surface of the material, which improves the adsorption efficiency. Besides, when compared with materials containing only iron (Fe/225H), the adsorption capacity of Ca-Fe/225H materials is still higher in both synthetic wastewater and domestic wastewater. The durability of the material after 10 regenerations was still over 80% effective. The material is effective in simultaneously treating both phosphate and hardness in the solution, with a much higher hardness treatment efficiency than amphoteric resin on the market (MB6SR).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00482-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article focuses on synthesizing dual-functional adsorption-ion exchange material (Fe-Ca/225H) by precipitation method on 225H cation exchange resin for the treatment of phosphate and hardness in water. Materials were analyzed through methods such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction studies (XRD), and scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). For the phosphate adsorption, suitable conditions were experimentally found to include reaction time (48 h), pH (6.5), adsorbent dosage (10 g/L), and HCO3− ions as the most impact ion on the phosphate adsorption. When calcium and magnesium were present in a solution containing phosphate, the phosphate adsorption capacity increased by 1.24 times. This was due to the combination of calcium and magnesium with phosphate on the surface of the material, which improves the adsorption efficiency. Besides, when compared with materials containing only iron (Fe/225H), the adsorption capacity of Ca-Fe/225H materials is still higher in both synthetic wastewater and domestic wastewater. The durability of the material after 10 regenerations was still over 80% effective. The material is effective in simultaneously treating both phosphate and hardness in the solution, with a much higher hardness treatment efficiency than amphoteric resin on the market (MB6SR).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.