An Infinite Sequence of Localized Semiclassical States for Nonlinear Maxwell–Dirac System

Jian Zhang, Ying Zhang
{"title":"An Infinite Sequence of Localized Semiclassical States for Nonlinear Maxwell–Dirac System","authors":"Jian Zhang, Ying Zhang","doi":"10.1007/s12220-024-01724-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the following nonlinear Maxwell–Dirac system </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\alpha \\cdot \\big (i\\hbar \\nabla +q(x){\\textbf{A}}(x)\\big )u-a\\beta u+V(x)u-q(x)\\phi (x)u=|u|^{p-2}u, \\\\ -\\Delta \\phi =q(x)|u|^2,\\\\ -\\Delta A_k=q(x)(\\alpha _ku)\\cdot u,\\ k=1,2,3, \\end{array}\\right. } \\end{aligned}$$</span><p>for <span>\\(x\\in {\\mathbb {R}}^3\\)</span> and <span>\\(p\\in (2,3)\\)</span>, where <span>\\(a &gt; 0\\)</span> is a constant, <span>\\(\\alpha =(\\alpha _1,\\alpha _2,\\alpha _3)\\)</span>, <span>\\(\\alpha _1,\\alpha _2,\\alpha _3\\)</span> and <span>\\(\\beta \\)</span> are <span>\\(4\\times 4\\)</span> Pauli–Dirac matrices, <span>\\({\\textbf{A}}=(A_1,A_2,A_3)\\)</span> is the magnetic field, <span>\\(\\phi \\)</span> is the electron field and <i>q</i> is the changing point-wise charge distribution. Under a local condition that <i>V</i> has a local trapping potential well, when <span>\\(\\varepsilon &gt;0\\)</span> is sufficiently small, we construct an infinite sequence of localized bound state solutions concentrating around the local minimum points of <i>V</i>. These solutions are of higher topological type in the sense that they are obtained from a symmetric linking structure. In the second part of this paper, we consider the case in which <i>V</i>(<i>x</i>) may approach <i>a</i> as <span>\\(|x|\\rightarrow \\infty \\)</span>. This is a degenerate case as most works in the literature assume a strict gap condition <span>\\(\\sup _{x\\in {\\mathbb {R}}^3} |V(x)|&lt; a\\)</span>, which is a key condition used in setting up the linking structure as well as in dealing with the compactness issues of the variational formulation.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01724-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the following nonlinear Maxwell–Dirac system

$$\begin{aligned} {\left\{ \begin{array}{ll} \alpha \cdot \big (i\hbar \nabla +q(x){\textbf{A}}(x)\big )u-a\beta u+V(x)u-q(x)\phi (x)u=|u|^{p-2}u, \\ -\Delta \phi =q(x)|u|^2,\\ -\Delta A_k=q(x)(\alpha _ku)\cdot u,\ k=1,2,3, \end{array}\right. } \end{aligned}$$

for \(x\in {\mathbb {R}}^3\) and \(p\in (2,3)\), where \(a > 0\) is a constant, \(\alpha =(\alpha _1,\alpha _2,\alpha _3)\), \(\alpha _1,\alpha _2,\alpha _3\) and \(\beta \) are \(4\times 4\) Pauli–Dirac matrices, \({\textbf{A}}=(A_1,A_2,A_3)\) is the magnetic field, \(\phi \) is the electron field and q is the changing point-wise charge distribution. Under a local condition that V has a local trapping potential well, when \(\varepsilon >0\) is sufficiently small, we construct an infinite sequence of localized bound state solutions concentrating around the local minimum points of V. These solutions are of higher topological type in the sense that they are obtained from a symmetric linking structure. In the second part of this paper, we consider the case in which V(x) may approach a as \(|x|\rightarrow \infty \). This is a degenerate case as most works in the literature assume a strict gap condition \(\sup _{x\in {\mathbb {R}}^3} |V(x)|< a\), which is a key condition used in setting up the linking structure as well as in dealing with the compactness issues of the variational formulation.

Abstract Image

非线性 Maxwell-Dirac 系统的局部半经典状态无限序列
在本文中,我们研究了以下非线性 Maxwell-Dirac 系统 $$\begin{aligned} {\left\{ \begin{array}{ll}\α \cdot \big (i\hbar \nabla +q(x){\textbf{A}}(x)\big )u-a \beta u+V(x)u-q(x)\phi (x)u=|u|^{p-2}u, \ -\Delta \phi =q(x)|u|^2,\ -\Delta A_k=q(x)(\α _ku)\cdot u,\ k=1,2,3, \end{array}\right.}\end{aligned}$$对于(x在{mathbb {R}}^3\) 和(p在(2,3)\),其中(a >;0)是一个常数,(α =(α _1,α _2,α _3))、(α _1,α _2,α _3)和(β)是(4乘以4)个保利-狄拉克矩阵、\({\textbf{A}}=(A_1,A_2,A_3)\)是磁场,(\phi \)是电子场,q是变化的点向电荷分布。在V具有局部捕获势阱的局部条件下,当\(\varepsilon >0\)足够小时,我们构造了一个无限序列的局部束缚态解,这些解集中在V的局部最小点周围。在本文的第二部分,我们考虑了 V(x) 可能以 \(|x|\rightarrow \infty \) 的形式接近 a 的情况。这是一种退化情况,因为文献中的大多数研究都假设了严格的间隙条件 \(\sup _{x\in {\mathbb {R}}^3}|V(x)|<a/),这是建立连接结构以及处理变分公式紧凑性问题的关键条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信