Optimal $$L^p$$ Regularity for $$\bar{\partial }$$ on the Hartogs Triangle

Yuan Zhang
{"title":"Optimal $$L^p$$ Regularity for $$\\bar{\\partial }$$ on the Hartogs Triangle","authors":"Yuan Zhang","doi":"10.1007/s12220-024-01728-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove weighted <span>\\(L^p\\)</span> estimates for the canonical solutions on product domains. As an application, we show that if <span>\\(p\\in [4, \\infty )\\)</span>, the <span>\\(\\bar{\\partial }\\)</span> equation on the Hartogs triangle with <span>\\(L^p\\)</span> data admits <span>\\(L^p\\)</span> solutions with the desired estimates. For any <span>\\(\\epsilon &gt;0\\)</span>, by constructing an example with <span>\\(L^p\\)</span> data but having no <span>\\(L^{p+\\epsilon }\\)</span> solutions, we verify the sharpness of the <span>\\(L^p\\)</span> regularity on the Hartogs triangle.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01728-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove weighted \(L^p\) estimates for the canonical solutions on product domains. As an application, we show that if \(p\in [4, \infty )\), the \(\bar{\partial }\) equation on the Hartogs triangle with \(L^p\) data admits \(L^p\) solutions with the desired estimates. For any \(\epsilon >0\), by constructing an example with \(L^p\) data but having no \(L^{p+\epsilon }\) solutions, we verify the sharpness of the \(L^p\) regularity on the Hartogs triangle.

哈托格三角形上 $$\bar{\partial }$$ 的最优 $$L^p$ 规律性
在本文中,我们证明了乘积域上典型解的加权(L^p\ )估计。作为应用,我们证明了如果(p在[4, \infty )),哈托格斯三角形上的(bar{partial }\)方程与(L^p\)数据承认具有所需的估计值的(L^p\)解。对于任意\(\epsilon >0\),通过构造一个有\(L^p\)数据但没有\(L^{p+\epsilon }\) 解的例子,我们验证了哈托格三角形上的\(L^p\)正则性的尖锐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信