Logarithmic Sobolev Inequalities, Gaussian Upper Bounds for the Heat Kernel, and the $$\textrm{G}_{2}$$ -Laplacian Flow

Masashi Ishida
{"title":"Logarithmic Sobolev Inequalities, Gaussian Upper Bounds for the Heat Kernel, and the $$\\textrm{G}_{2}$$ -Laplacian Flow","authors":"Masashi Ishida","doi":"10.1007/s12220-024-01697-4","DOIUrl":null,"url":null,"abstract":"<p>We prove a logarithmic Sobolev inequality along the <span>\\(\\textrm{G}_{2}\\)</span>-Laplacian flow. A uniform Sololev inequality along the <span>\\(\\textrm{G}_{2}\\)</span>-Laplacian flow with uniformly bounded scalar curvature is derived from the logarithmic Sobolev inequality. The uniform Sololev inequality implies a <span>\\(\\kappa \\)</span>-noncollapsing estimate for the <span>\\(\\textrm{G}_{2}\\)</span>-Laplacian flow with uniformly bounded scalar curvature. Furthermore, by using the logarithmic Sobolev inequality, we prove Gaussian-type upper bounds for the heat kernel along the <span>\\(\\textrm{G}_{2}\\)</span>-Laplacian flow with uniformly bounded scalar curvature.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01697-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a logarithmic Sobolev inequality along the \(\textrm{G}_{2}\)-Laplacian flow. A uniform Sololev inequality along the \(\textrm{G}_{2}\)-Laplacian flow with uniformly bounded scalar curvature is derived from the logarithmic Sobolev inequality. The uniform Sololev inequality implies a \(\kappa \)-noncollapsing estimate for the \(\textrm{G}_{2}\)-Laplacian flow with uniformly bounded scalar curvature. Furthermore, by using the logarithmic Sobolev inequality, we prove Gaussian-type upper bounds for the heat kernel along the \(\textrm{G}_{2}\)-Laplacian flow with uniformly bounded scalar curvature.

对数索波列夫不等式、热核的高斯上界以及 $$textrm{G}_{2}$ - 拉普拉卡流
我们证明了沿\(\textrm{G}_{2}\)-拉普拉卡流的对数索波列夫不等式。从对数索波列夫不等式推导出了沿(textrm{G}_{2}\)-拉普拉卡流的均匀有界标量曲率的均匀索波列夫不等式。均匀索洛列夫不等式意味着具有均匀有界标量曲率的拉普拉卡流的(\textrm{G}_{2}\)非碰撞估计。此外,通过使用对数索波列夫不等式,我们证明了具有均匀有界标量曲率的 \(\textrm{G}_{2}\)- 拉普拉卡流的热核的高斯型上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信