Sobolev Estimates for Singular-Degenerate Quasilinear Equations Beyond the $$A_2$$ Class

Hongjie Dong, Tuoc Phan, Yannick Sire
{"title":"Sobolev Estimates for Singular-Degenerate Quasilinear Equations Beyond the $$A_2$$ Class","authors":"Hongjie Dong, Tuoc Phan, Yannick Sire","doi":"10.1007/s12220-024-01729-z","DOIUrl":null,"url":null,"abstract":"<p>We study a conormal boundary value problem for a class of quasilinear elliptic equations in bounded domain <span>\\(\\Omega \\)</span> whose coefficients can be degenerate or singular of the type <span>\\(\\text {dist}(x, \\partial \\Omega )^\\alpha \\)</span>, where <span>\\(\\partial \\Omega \\)</span> is the boundary of <span>\\(\\Omega \\)</span> and <span>\\(\\alpha \\in (-1, \\infty )\\)</span> is a given number. We establish weighted Sobolev type estimates for weak solutions under a smallness assumption on the weighted mean oscillations of the coefficients in small balls. Our approach relies on a perturbative method and several new Lipschitz estimates for weak solutions to a class of singular-degenerate quasilinear equations.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01729-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a conormal boundary value problem for a class of quasilinear elliptic equations in bounded domain \(\Omega \) whose coefficients can be degenerate or singular of the type \(\text {dist}(x, \partial \Omega )^\alpha \), where \(\partial \Omega \) is the boundary of \(\Omega \) and \(\alpha \in (-1, \infty )\) is a given number. We establish weighted Sobolev type estimates for weak solutions under a smallness assumption on the weighted mean oscillations of the coefficients in small balls. Our approach relies on a perturbative method and several new Lipschitz estimates for weak solutions to a class of singular-degenerate quasilinear equations.

超越 $$A_2$ 类的奇异退化准线性方程的索波列夫估计值
我们研究了有界域 \(\Omega \)中一类准线性椭圆方程的常边界值问题,这些方程的系数可以是退化的,也可以是类型为 \(\text {dist}(x.) ^\alpha \的奇异系数、\其中 \(\partial \Omega \) 是 \(\Omega \) 的边界,而 \(\alpha \in (-1, \infty )\) 是一个给定的数。我们根据小球中系数的加权平均振荡的小性假设,建立了弱解的加权索波列夫类型估计。我们的方法依赖于对一类奇异退化准线性方程弱解的扰动方法和几种新的 Lipschitz 估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信