Multiplicity and Concentration Behavior of Solutions to a Class of Fractional Kirchhoff Equation Involving Exponential Nonlinearity

Yueqiang Song, Xueqi Sun, Sihua Liang, Van Thin Nguyen
{"title":"Multiplicity and Concentration Behavior of Solutions to a Class of Fractional Kirchhoff Equation Involving Exponential Nonlinearity","authors":"Yueqiang Song, Xueqi Sun, Sihua Liang, Van Thin Nguyen","doi":"10.1007/s12220-024-01707-5","DOIUrl":null,"url":null,"abstract":"<p>This article deals with the following fractional <span>\\(\\frac{N}{s}\\)</span>-Laplace Kichhoff equation involving exponential growth of the form: </p><span>$$\\begin{aligned} \\varepsilon ^{N}K\\left( [u]_{s,\\frac{N}{s}}^{\\frac{N}{s}}\\right) (-\\Delta )_{{N}/{s}}^{s}u+Z(x)|u|^{\\frac{N}{s}-2}u=f(u)\\;\\text {in}\\; \\mathbb R^{N}, \\end{aligned}$$</span><p>where <span>\\(\\varepsilon &gt;0\\)</span> is a parameter, <span>\\(s\\in (0,1)\\)</span> and <span>\\((-\\Delta )_p^s\\)</span> is the fractional <i>p</i>-Laplace operator with <span>\\(p=\\frac{N}{s}\\ge 2\\)</span>, <i>K</i> is a Kirchhoff function, <i>f</i> is a continuous function with exponential growth and <i>Z</i> is a potential function possessing a local minimum. Under some suitable conditions, we obtain the existence, multiplicity and concentration of solutions to the above problem via penalization methods and Lyusternik-Schnirelmann theory.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01707-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article deals with the following fractional \(\frac{N}{s}\)-Laplace Kichhoff equation involving exponential growth of the form:

$$\begin{aligned} \varepsilon ^{N}K\left( [u]_{s,\frac{N}{s}}^{\frac{N}{s}}\right) (-\Delta )_{{N}/{s}}^{s}u+Z(x)|u|^{\frac{N}{s}-2}u=f(u)\;\text {in}\; \mathbb R^{N}, \end{aligned}$$

where \(\varepsilon >0\) is a parameter, \(s\in (0,1)\) and \((-\Delta )_p^s\) is the fractional p-Laplace operator with \(p=\frac{N}{s}\ge 2\), K is a Kirchhoff function, f is a continuous function with exponential growth and Z is a potential function possessing a local minimum. Under some suitable conditions, we obtain the existence, multiplicity and concentration of solutions to the above problem via penalization methods and Lyusternik-Schnirelmann theory.

Abstract Image

涉及指数非线性的一类分数基尔霍夫方程解的多重性和集中行为
本文讨论以下涉及指数增长形式的分数(\frac{N}{s}\)-拉普拉斯-基霍夫方程: $$\begin{aligned}\varepsilon ^{N}K\left( [u]_{s,\frac{N}{s}}^{\frac{N}{s}} 右) (-\Delta )_{{N}/{s}}^{s}u+Z(x)|u|^{frac{N}{s}-2}u=f(u)\;\text {in}\;\mathbb R^{N}, \end{aligned}$$其中 \(\varepsilon >;0)是一个参数,(s/in (0,1))和((-\Delta )_p^s\) 是分数p-拉普拉斯算子,其中(p=\frac{N}{s}\ge 2\),K是一个基尔霍夫函数,f是一个指数增长的连续函数,Z是一个具有局部最小值的势函数。在一些合适的条件下,我们通过惩罚方法和 Lyusternik-Schnirelmann 理论得到了上述问题解的存在性、多重性和集中性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信