Shape Gradient Methods for Shape Optimization of an Unsteady Multiscale Fluid–Structure Interaction Model

Keyang Zhang, Shengfeng Zhu, Jiajie Li, Wenjing Yan
{"title":"Shape Gradient Methods for Shape Optimization of an Unsteady Multiscale Fluid–Structure Interaction Model","authors":"Keyang Zhang, Shengfeng Zhu, Jiajie Li, Wenjing Yan","doi":"10.1007/s12220-024-01695-6","DOIUrl":null,"url":null,"abstract":"<p>We consider numerical shape optimization of a fluid–structure interaction model. The constrained system involves multiscale coupling of a two-dimensional unsteady Navier–Stokes equation and a one-dimensional ordinary differential equation for fluid flows and structure, respectively. We derive shape gradients for both objective functionals of least-squares type and energy dissipation. The state and adjoint state equations are numerically solved on the time-dependent domains using the Arbitrary-Lagrangian–Eulerian method. Numerical results are presented to illustrate effectiveness of algorithms.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01695-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider numerical shape optimization of a fluid–structure interaction model. The constrained system involves multiscale coupling of a two-dimensional unsteady Navier–Stokes equation and a one-dimensional ordinary differential equation for fluid flows and structure, respectively. We derive shape gradients for both objective functionals of least-squares type and energy dissipation. The state and adjoint state equations are numerically solved on the time-dependent domains using the Arbitrary-Lagrangian–Eulerian method. Numerical results are presented to illustrate effectiveness of algorithms.

Abstract Image

用于非稳态多尺度流固相互作用模型形状优化的形状梯度法
我们考虑对流固耦合模型进行数值形状优化。该约束系统涉及二维非稳态纳维-斯托克斯方程和一维常微分方程的多尺度耦合,分别用于流体流动和结构。我们推导出最小二乘法类型的目标函数和能量耗散的形状梯度。使用任意-拉格朗日-欧勒方法在随时间变化的域上对状态方程和邻接状态方程进行了数值求解。数值结果用于说明算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信