Inverse Problem of the Thermoelastic Plate System with a Curved Middle Surface and Memory Term

Song-Ren Fu, Liangbiao Chen, Goong Chen, Peng-Fei Yao
{"title":"Inverse Problem of the Thermoelastic Plate System with a Curved Middle Surface and Memory Term","authors":"Song-Ren Fu, Liangbiao Chen, Goong Chen, Peng-Fei Yao","doi":"10.1007/s12220-024-01714-6","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with an inverse problem of a coupled thermoelastic plate model. Two major features are that the thermal equation has a memory effect, while the plate equation has a curved middle surface. A differential geometric approach is developed, by which we study the pointwise Carleman estimates for elliptic and hyperbolic equations. We are able to prove a key Carleman estimate for the strongly coupled system. From them, the Hölder stability in recovering the source terms and the coupling coefficient is obtained. The measurements of the plate deflection and temperature are assumed to be taken on a subdomain of the boundary.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01714-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with an inverse problem of a coupled thermoelastic plate model. Two major features are that the thermal equation has a memory effect, while the plate equation has a curved middle surface. A differential geometric approach is developed, by which we study the pointwise Carleman estimates for elliptic and hyperbolic equations. We are able to prove a key Carleman estimate for the strongly coupled system. From them, the Hölder stability in recovering the source terms and the coupling coefficient is obtained. The measurements of the plate deflection and temperature are assumed to be taken on a subdomain of the boundary.

具有弯曲中表面和记忆项的热弹性板系统的逆问题
本文涉及一个耦合热弹性板模型的逆问题。它有两个主要特点:热方程具有记忆效应,而板方程具有弯曲的中间曲面。我们开发了一种微分几何方法,通过这种方法我们研究了椭圆方程和双曲方程的点式卡勒曼估计。我们能够证明强耦合系统的关键卡勒曼估计。由此,我们获得了恢复源项和耦合系数的赫尔德稳定性。假设对板挠度和温度的测量是在边界的子域上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信