Condensate and superfluid fraction of homogeneous Bose gases in a self-consistent Popov approximation

C. Vianello, L. Salasnich
{"title":"Condensate and superfluid fraction of homogeneous Bose gases in a self-consistent Popov approximation","authors":"C. Vianello, L. Salasnich","doi":"arxiv-2406.20021","DOIUrl":null,"url":null,"abstract":"We study the condensate and superfluid fraction of a homogeneous gas of\nweakly interacting bosons in three spatial dimensions by adopting a\nself-consistent Popov approximation, comparing this approach with other\ntheoretical schemes. Differently from the superfluid fraction, we find that at\nfinite temperature the condensate fraction is a non-monotonic function of the\ninteraction strength, presenting a global maximum at a characteristic value of\nthe gas parameter, which grows as the temperature increases. This non-monotonic\nbehavior has not yet been observed, but could be tested with the available\nexperimental setups of ultracold bosonic atoms confined in a box potential. We\nclearly identify the region of parameter space that is of experimental interest\nto look for this behavior and provide explicit expressions for the relevant\nobservables. Finite size effects are also discussed within a semiclassical\napproximation.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"174 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.20021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the condensate and superfluid fraction of a homogeneous gas of weakly interacting bosons in three spatial dimensions by adopting a self-consistent Popov approximation, comparing this approach with other theoretical schemes. Differently from the superfluid fraction, we find that at finite temperature the condensate fraction is a non-monotonic function of the interaction strength, presenting a global maximum at a characteristic value of the gas parameter, which grows as the temperature increases. This non-monotonic behavior has not yet been observed, but could be tested with the available experimental setups of ultracold bosonic atoms confined in a box potential. We clearly identify the region of parameter space that is of experimental interest to look for this behavior and provide explicit expressions for the relevant observables. Finite size effects are also discussed within a semiclassical approximation.
自洽波波夫近似中均相玻色气体的凝结和超流体分数
我们采用自洽的波波夫近似方法,研究了三维空间中弱相互作用玻色子均匀气体的凝聚态和超流体分数,并将这种方法与其他理论方案进行了比较。与超流体分数不同,我们发现在无限温度下,凝聚态分数是相互作用强度的非单调函数,在气体参数的特征值处呈现全局最大值,并随着温度的升高而增长。这种非单调行为尚未被观测到,但可以利用现有的盒势约束超冷玻色原子实验装置进行测试。我们明确指出了实验感兴趣的参数空间区域,以寻找这种行为,并提供了相关观测值的明确表达式。我们还在半经典近似方法中讨论了有限尺寸效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信