Jinyu Yang, Yanjiao Shi, Jin Zhang, Qianqian Guo, Qing Zhang, Liu Cui
{"title":"Multi-branch feature fusion and refinement network for salient object detection","authors":"Jinyu Yang, Yanjiao Shi, Jin Zhang, Qianqian Guo, Qing Zhang, Liu Cui","doi":"10.1007/s00530-024-01356-2","DOIUrl":null,"url":null,"abstract":"<p>With the development of convolutional neural networks (CNNs), salient object detection methods have made great progress in performance. Most methods are designed with complex structures to aggregate the multi-level feature maps, to reach the goal of filtering noise and obtaining rich information. However, there is no differentiation when dealing with the multi-level features, and only a uniform treatment is used in general. Based on the above considerations, in this paper, we propose a multi-branch feature fusion and refinement network (MFFRNet), which is a framework for treating low-level features and high-level features differently, and effectively fuses the information of multi-level features to make the results more accurate. We propose a detail optimization module (DOM) designed for the rich detail information in low-level features and a pyramid feature extraction module (PFEM) designed for the rich semantic information in high-level features, as well as a feature optimization module (FOM) for refining the fused feature of multiple levels. Extensive experiments are conducted on six benchmark datasets, and the results show that our approach outperforms the state-of-the-art methods.</p>","PeriodicalId":51138,"journal":{"name":"Multimedia Systems","volume":"8 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01356-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of convolutional neural networks (CNNs), salient object detection methods have made great progress in performance. Most methods are designed with complex structures to aggregate the multi-level feature maps, to reach the goal of filtering noise and obtaining rich information. However, there is no differentiation when dealing with the multi-level features, and only a uniform treatment is used in general. Based on the above considerations, in this paper, we propose a multi-branch feature fusion and refinement network (MFFRNet), which is a framework for treating low-level features and high-level features differently, and effectively fuses the information of multi-level features to make the results more accurate. We propose a detail optimization module (DOM) designed for the rich detail information in low-level features and a pyramid feature extraction module (PFEM) designed for the rich semantic information in high-level features, as well as a feature optimization module (FOM) for refining the fused feature of multiple levels. Extensive experiments are conducted on six benchmark datasets, and the results show that our approach outperforms the state-of-the-art methods.
期刊介绍:
This journal details innovative research ideas, emerging technologies, state-of-the-art methods and tools in all aspects of multimedia computing, communication, storage, and applications. It features theoretical, experimental, and survey articles.