On certain matrix algebras related to quasi-Toeplitz matrices

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Dario A. Bini, Beatrice Meini
{"title":"On certain matrix algebras related to quasi-Toeplitz matrices","authors":"Dario A. Bini, Beatrice Meini","doi":"10.1007/s11075-024-01855-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(A_\\alpha \\)</span> be the semi-infinite tridiagonal matrix having subdiagonal and superdiagonal unit entries, <span>\\((A_\\alpha )_{11}=\\alpha \\)</span>, where <span>\\(\\alpha \\in \\mathbb C\\)</span>, and zero elsewhere. A basis <span>\\(\\{P_0,P_1,P_2,\\ldots \\}\\)</span> of the linear space <span>\\(\\mathcal {P}_\\alpha \\)</span> spanned by the powers of <span>\\(A_\\alpha \\)</span> is determined, where <span>\\(P_0=I\\)</span>, <span>\\(P_n=T_n+H_n\\)</span>, <span>\\(T_n\\)</span> is the symmetric Toeplitz matrix having ones in the <i>n</i>th super- and sub-diagonal, zeros elsewhere, and <span>\\(H_n\\)</span> is the Hankel matrix with first row <span>\\([\\theta \\alpha ^{n-2}, \\theta \\alpha ^{n-3}, \\ldots , \\theta , \\alpha , 0, \\ldots ]\\)</span>, where <span>\\(\\theta =\\alpha ^2-1\\)</span>. The set <span>\\(\\mathcal {P}_\\alpha \\)</span> is an algebra, and for <span>\\(\\alpha \\in \\{-1,0,1\\}\\)</span>, <span>\\(H_n\\)</span> has only one nonzero anti-diagonal. This fact is exploited to provide a better representation of symmetric quasi-Toeplitz matrices <span>\\(\\mathcal{Q}\\mathcal{T}_S\\)</span>, where, instead of representing a generic matrix <span>\\(A\\in \\mathcal{Q}\\mathcal{T}_S\\)</span> as <span>\\(A=T+K\\)</span>, where <i>T</i> is Toeplitz and <i>K</i> is compact, it is represented as <span>\\(A=P+H\\)</span>, where <span>\\(P\\in \\mathcal {P}_\\alpha \\)</span> and <i>H</i> is compact. It is shown experimentally that the matrix arithmetic obtained this way is much more effective than that implemented in the toolbox <span>CQT-Toolbox</span> of <i>Numer. Algo.</i> 81(2):741–769, 2019.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"32 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01855-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(A_\alpha \) be the semi-infinite tridiagonal matrix having subdiagonal and superdiagonal unit entries, \((A_\alpha )_{11}=\alpha \), where \(\alpha \in \mathbb C\), and zero elsewhere. A basis \(\{P_0,P_1,P_2,\ldots \}\) of the linear space \(\mathcal {P}_\alpha \) spanned by the powers of \(A_\alpha \) is determined, where \(P_0=I\), \(P_n=T_n+H_n\), \(T_n\) is the symmetric Toeplitz matrix having ones in the nth super- and sub-diagonal, zeros elsewhere, and \(H_n\) is the Hankel matrix with first row \([\theta \alpha ^{n-2}, \theta \alpha ^{n-3}, \ldots , \theta , \alpha , 0, \ldots ]\), where \(\theta =\alpha ^2-1\). The set \(\mathcal {P}_\alpha \) is an algebra, and for \(\alpha \in \{-1,0,1\}\), \(H_n\) has only one nonzero anti-diagonal. This fact is exploited to provide a better representation of symmetric quasi-Toeplitz matrices \(\mathcal{Q}\mathcal{T}_S\), where, instead of representing a generic matrix \(A\in \mathcal{Q}\mathcal{T}_S\) as \(A=T+K\), where T is Toeplitz and K is compact, it is represented as \(A=P+H\), where \(P\in \mathcal {P}_\alpha \) and H is compact. It is shown experimentally that the matrix arithmetic obtained this way is much more effective than that implemented in the toolbox CQT-Toolbox of Numer. Algo. 81(2):741–769, 2019.

Abstract Image

关于与准托普利兹矩阵有关的某些矩阵代数
让 \(A_\alpha \)是半无限三对角矩阵,它具有子对角线和超对角线单位条目,\((A_\alpha )_{11}=\alpha \),其中\(\alpha \in \mathbb C\), 其他地方为零。由 \(A_\alpha \)的幂所跨的线性空间 \(\mathcal {P}_\alpha \)的基(\{P_0,P_1,P_2,\ldots \})被确定、其中 \(P_0=I\), \(P_n=T_n+H_n\), \(T_n\) 是对称的托普利兹矩阵,在第 n 个超对角线和子对角线上为 1、H_n\ 是第一行为 \([\theta\alpha^{n-2}, \theta\alpha^{n-3},\ldots, \theta,\alpha,0,\ldots]\)的汉克尔矩阵,其中 \(\theta =\alpha ^2-1/)。集合 \(\mathcal {P}_\alpha \)是一个代数,对于 \(\alpha \in \{-1,0,1}\), \(H_n\) 只有一个非零反对角线。利用这一事实可以更好地表示对称准托普利兹矩阵(\mathcal{Q}\mathcal{T}_S\),其中、A=T+K),其中 T 是 Toeplitz,K 是紧凑的,而是表示为 \(A=P+H),其中 \(P 在 \mathcal {P}_\alpha \),H 是紧凑的。实验表明,这种方法得到的矩阵运算比 Numer.Algo.81(2):741-769, 2019.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信