{"title":"The forward-backward-forward algorithm with extrapolation from the past and penalty scheme for solving monotone inclusion problems and applications","authors":"Buris Tongnoi","doi":"10.1007/s11075-024-01866-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider an improved iterative method for solving the monotone inclusion problem in the form of <span>\\(0 \\in A(x) + D(x) + N_{C}(x)\\)</span> in a real Hilbert space, where <i>A</i> is a maximally monotone operator, <i>D</i> and <i>B</i> are monotone and Lipschitz continuous, and <i>C</i> is the nonempty set of zeros of the operator <i>B</i>. We investigate the weak ergodic and strong convergence (when <i>A</i> is strongly monotone) of the iterates produced by our considered method. We show that the algorithmic scheme can also be applied to minimax problems. Furthermore, we discuss how to apply the method to the inclusion problem involving a finite sum of compositions of linear continuous operators by using the product space approach and employ it for convex minimization. Finally, we present a numerical experiment in TV-based image inpainting to validate the proposed theoretical theorem.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"122 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01866-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider an improved iterative method for solving the monotone inclusion problem in the form of \(0 \in A(x) + D(x) + N_{C}(x)\) in a real Hilbert space, where A is a maximally monotone operator, D and B are monotone and Lipschitz continuous, and C is the nonempty set of zeros of the operator B. We investigate the weak ergodic and strong convergence (when A is strongly monotone) of the iterates produced by our considered method. We show that the algorithmic scheme can also be applied to minimax problems. Furthermore, we discuss how to apply the method to the inclusion problem involving a finite sum of compositions of linear continuous operators by using the product space approach and employ it for convex minimization. Finally, we present a numerical experiment in TV-based image inpainting to validate the proposed theoretical theorem.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.