The forward-backward-forward algorithm with extrapolation from the past and penalty scheme for solving monotone inclusion problems and applications

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Buris Tongnoi
{"title":"The forward-backward-forward algorithm with extrapolation from the past and penalty scheme for solving monotone inclusion problems and applications","authors":"Buris Tongnoi","doi":"10.1007/s11075-024-01866-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider an improved iterative method for solving the monotone inclusion problem in the form of <span>\\(0 \\in A(x) + D(x) + N_{C}(x)\\)</span> in a real Hilbert space, where <i>A</i> is a maximally monotone operator, <i>D</i> and <i>B</i> are monotone and Lipschitz continuous, and <i>C</i> is the nonempty set of zeros of the operator <i>B</i>. We investigate the weak ergodic and strong convergence (when <i>A</i> is strongly monotone) of the iterates produced by our considered method. We show that the algorithmic scheme can also be applied to minimax problems. Furthermore, we discuss how to apply the method to the inclusion problem involving a finite sum of compositions of linear continuous operators by using the product space approach and employ it for convex minimization. Finally, we present a numerical experiment in TV-based image inpainting to validate the proposed theoretical theorem.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"122 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01866-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider an improved iterative method for solving the monotone inclusion problem in the form of \(0 \in A(x) + D(x) + N_{C}(x)\) in a real Hilbert space, where A is a maximally monotone operator, D and B are monotone and Lipschitz continuous, and C is the nonempty set of zeros of the operator B. We investigate the weak ergodic and strong convergence (when A is strongly monotone) of the iterates produced by our considered method. We show that the algorithmic scheme can also be applied to minimax problems. Furthermore, we discuss how to apply the method to the inclusion problem involving a finite sum of compositions of linear continuous operators by using the product space approach and employ it for convex minimization. Finally, we present a numerical experiment in TV-based image inpainting to validate the proposed theoretical theorem.

Abstract Image

解决单调包含问题的前向-后向-前向算法与过去外推法和惩罚方案及其应用
在本文中,我们考虑了一种改进的迭代法,用于求解实希尔伯特空间中的\(0 \in A(x) + D(x) + N_{C}(x)\) 形式的单调包含问题,其中 A 是最大单调算子,D 和 B 是单调且 Lipschitz 连续的算子,C 是算子 B 的非空零集。我们研究了我们所考虑的方法所产生的迭代的弱遍历性和强收敛性(当 A 是强单调时)。我们证明,该算法方案也可应用于 minimax 问题。此外,我们还讨论了如何利用乘积空间方法将该方法应用于涉及线性连续算子组成的有限和的包含问题,并将其用于凸最小化。最后,我们介绍了基于电视的图像绘制数值实验,以验证所提出的理论定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信