On zero behavior of higher-order Sobolev-type discrete $$q-$$ Hermite I orthogonal polynomials

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Edmundo J. Huertas, Alberto Lastra, Anier Soria-Lorente, Víctor Soto-Larrosa
{"title":"On zero behavior of higher-order Sobolev-type discrete $$q-$$ Hermite I orthogonal polynomials","authors":"Edmundo J. Huertas, Alberto Lastra, Anier Soria-Lorente, Víctor Soto-Larrosa","doi":"10.1007/s11075-024-01868-y","DOIUrl":null,"url":null,"abstract":"<p>In this work, we investigate the sequence of monic <i>q</i>-Hermite I-Sobolev type orthogonal polynomials of higher-order, denoted by <span>\\(\\{\\mathbb {H}_{n}(x;q)\\}_{n\\ge 0}\\)</span>, which are orthogonal with respect to the following non-standard inner product involving <i>q</i>-differences: </p><span>$$\\begin{aligned} \\langle p,q\\rangle _{\\lambda }=\\int _{-1}^{1}f\\left( x\\right) g\\left( x\\right) (qx,-qx;q)_{\\infty }d_{q}(x)+\\lambda \\,(\\mathscr {D}_{q}^{j}f)(\\alpha )(\\mathscr {D}_{q}^{j}g)(\\alpha ), \\end{aligned}$$</span><p>where <span>\\(\\lambda \\)</span> belongs to the set of positive real numbers, <span>\\(\\mathscr {D}_{q}^{j}\\)</span> denotes the <i>j</i>-th <i>q</i> -discrete analogue of the derivative operator, <span>\\(q^j\\alpha \\in \\mathbb {R}\\backslash (-1,1)\\)</span>, and <span>\\((qx,-qx;q)_{\\infty }d_{q}(x)\\)</span> denotes the orthogonality weight with its points of increase in a geometric progression. Connection formulas between these polynomials and standard <i>q</i>-Hermite I polynomials are deduced. The basic hypergeometric representation of <span>\\(\\mathbb {H}_{n}(x;q)\\)</span> is obtained. Moreover, for certain real values of <span>\\(\\alpha \\)</span> satisfying the condition <span>\\(q^j\\alpha \\in \\mathbb {R}\\backslash (-1,1)\\)</span>, we present results concerning the location of the zeros of <span>\\(\\mathbb {H}_{n}(x;q)\\)</span> and perform a comprehensive analysis of their asymptotic behavior as the parameter <span>\\(\\lambda \\)</span> tends to infinity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01868-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate the sequence of monic q-Hermite I-Sobolev type orthogonal polynomials of higher-order, denoted by \(\{\mathbb {H}_{n}(x;q)\}_{n\ge 0}\), which are orthogonal with respect to the following non-standard inner product involving q-differences:

$$\begin{aligned} \langle p,q\rangle _{\lambda }=\int _{-1}^{1}f\left( x\right) g\left( x\right) (qx,-qx;q)_{\infty }d_{q}(x)+\lambda \,(\mathscr {D}_{q}^{j}f)(\alpha )(\mathscr {D}_{q}^{j}g)(\alpha ), \end{aligned}$$

where \(\lambda \) belongs to the set of positive real numbers, \(\mathscr {D}_{q}^{j}\) denotes the j-th q -discrete analogue of the derivative operator, \(q^j\alpha \in \mathbb {R}\backslash (-1,1)\), and \((qx,-qx;q)_{\infty }d_{q}(x)\) denotes the orthogonality weight with its points of increase in a geometric progression. Connection formulas between these polynomials and standard q-Hermite I polynomials are deduced. The basic hypergeometric representation of \(\mathbb {H}_{n}(x;q)\) is obtained. Moreover, for certain real values of \(\alpha \) satisfying the condition \(q^j\alpha \in \mathbb {R}\backslash (-1,1)\), we present results concerning the location of the zeros of \(\mathbb {H}_{n}(x;q)\) and perform a comprehensive analysis of their asymptotic behavior as the parameter \(\lambda \) tends to infinity.

Abstract Image

论高阶索波列夫型离散 $$q-$$ 赫米特 I 正交多项式的零点行为
在这项工作中,我们研究了高阶单q-Hermite I-Sobolev型正交多项式序列,用 \(\{mathbb {H}_{n}(x;q)\}_{n\ge 0}\) 表示,这些正交多项式与以下涉及q差的非标准内积有关:开始\langle p,q\rangle _{lambda }=/int _{-1}^{1}f\left( x\right) g\left( x\right) (qx,-qx;q)_{infty }d_{q}(x)+\lambda \,(\mathscr{D}_{q}^{j}f)(\alpha )(\mathscr {D}_{q}^{j}g)(\alpha ), \end{aligned}$ 其中\(\lambda \)属于正实数集、\(\mathscr{D}_{q}^{j}\)表示导数算子的第 j 个 q -离散类似度,\(q^j\alpha \in \mathbb {R}\backslash (-1,1)\), 和\((qx,-qx;q)_{infty}d_{q}(x)\)表示正交权重,其增加点为几何级数。推导出了这些多项式与标准 q-Hermite I 多项式之间的连接公式。得到了 \(\mathbb {H}_{n}(x;q)\) 的基本超几何表示。此外,对于满足条件 \(q^j\alpha \in \mathbb {R}\backslash (-1,1)\) 的 \(α \) 的某些实值,我们提出了有关 \(\mathbb {H}_{n}(x;q)\) 的零点位置的结果,并对参数 \(\lambda \) 趋于无穷大时的渐近行为进行了全面分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信