Ghada Al-Kateb, Maad M. Mijwil, Mohammad Aljanabi, Mostafa Abotaleb, S. R. Krishna Priya, Pradeep Mishra
{"title":"AI-PotatoGuard: Leveraging Generative Models for Early Detection of Potato Diseases","authors":"Ghada Al-Kateb, Maad M. Mijwil, Mohammad Aljanabi, Mostafa Abotaleb, S. R. Krishna Priya, Pradeep Mishra","doi":"10.1007/s11540-024-09751-y","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces AI-PotatoGuard, an artificial intelligence (AI) tool which enhances the management of diseases in potatoes through the use of generative models and convolutional neural networks (CNN). In contrast to traditional practices, AI-PotatoGuard is a tool which provides the ability to detect potatoes in the early stages of the disease and also precisely detects the area affected. Through AI-PotatoGuard, it was observed that the conventional approach of identifying the diseases have been surpassed with 95% success observed in terms of getting the detection perfectly right and 85% in terms of getting the detection right at a much earlier stage. Traditional practices lagged with 75% detection right observation and a mere 50% in terms of detecting the disease early on. While traditional methods applied chemicals 2–3 times in practice in an area, the monitoring with AI-PotatoGuard resulted in only 2 out of 6 times in the same area. Hence, efficient and sustainable agriculture is achieved using AI.</p>","PeriodicalId":20378,"journal":{"name":"Potato Research","volume":"39 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potato Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11540-024-09751-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces AI-PotatoGuard, an artificial intelligence (AI) tool which enhances the management of diseases in potatoes through the use of generative models and convolutional neural networks (CNN). In contrast to traditional practices, AI-PotatoGuard is a tool which provides the ability to detect potatoes in the early stages of the disease and also precisely detects the area affected. Through AI-PotatoGuard, it was observed that the conventional approach of identifying the diseases have been surpassed with 95% success observed in terms of getting the detection perfectly right and 85% in terms of getting the detection right at a much earlier stage. Traditional practices lagged with 75% detection right observation and a mere 50% in terms of detecting the disease early on. While traditional methods applied chemicals 2–3 times in practice in an area, the monitoring with AI-PotatoGuard resulted in only 2 out of 6 times in the same area. Hence, efficient and sustainable agriculture is achieved using AI.
期刊介绍:
Potato Research, the journal of the European Association for Potato Research (EAPR), promotes the exchange of information on all aspects of this fast-evolving global industry. It offers the latest developments in innovative research to scientists active in potato research. The journal includes authoritative coverage of new scientific developments, publishing original research and review papers on such topics as:
Molecular sciences;
Breeding;
Physiology;
Pathology;
Nematology;
Virology;
Agronomy;
Engineering and Utilization.