The maximum number of homogeneous weights of linear codes over chain rings

Pub Date : 2024-07-02 DOI:10.1007/s10801-024-01347-6
Minjia Shi, Tingting Tong, Thomas Honold, Patrick Solé
{"title":"The maximum number of homogeneous weights of linear codes over chain rings","authors":"Minjia Shi, Tingting Tong, Thomas Honold, Patrick Solé","doi":"10.1007/s10801-024-01347-6","DOIUrl":null,"url":null,"abstract":"<p>The problem of determining the largest possible number of distinct Hamming weights in several classes of codes over finite fields was studied recently in several papers (Shi et al. in Des Codes Cryptogr 87(1):87–95, 2019, in IEEE Trans Inf Theory 66(11):6855–6862, 2020; Chen et al. in IEEE Trans Inf Theory 69(2):995–1004, 2022). A further problem is to find the minimum length of codes meeting those bounds with equality. These two questions are extended here to linear codes over chain rings for the homogeneous weight. An explicit upper bound is given for codes of given type and arbitrary length as a function of the residue field size. This bound is then shown to be tight by an argument based on Hjemslev geometries. The second question is studied for chain rings with residue field of order two.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01347-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of determining the largest possible number of distinct Hamming weights in several classes of codes over finite fields was studied recently in several papers (Shi et al. in Des Codes Cryptogr 87(1):87–95, 2019, in IEEE Trans Inf Theory 66(11):6855–6862, 2020; Chen et al. in IEEE Trans Inf Theory 69(2):995–1004, 2022). A further problem is to find the minimum length of codes meeting those bounds with equality. These two questions are extended here to linear codes over chain rings for the homogeneous weight. An explicit upper bound is given for codes of given type and arbitrary length as a function of the residue field size. This bound is then shown to be tight by an argument based on Hjemslev geometries. The second question is studied for chain rings with residue field of order two.

Abstract Image

分享
查看原文
链环上线性编码的最大同权数
最近有几篇论文研究了确定有限域上几类编码中最大可能数目的不同汉明权重的问题(Shi 等,载于 Des Codes Cryptogr 87(1):87-95, 2019;IEEE Trans Inf Theory 66(11):6855-6862, 2020;Chen 等,载于 IEEE Trans Inf Theory 69(2):995-1004, 2022)。另一个问题是找到满足这些等价界限的编码的最小长度。这两个问题在这里被扩展到同权重链环上的线性编码。对于给定类型和任意长度的编码,给出了一个明确的上界,它是残差域大小的函数。然后,通过基于赫耶姆斯列夫几何的论证,证明了这一约束的严密性。第二个问题是研究具有二阶残差域的链环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信