{"title":"Regression trees for interval-censored failure time data based on censoring unbiased transformations and pseudo-observations","authors":"Ce Yang, Xianwei Li, Liqun Diao, Richard J. Cook","doi":"10.1002/cjs.11807","DOIUrl":null,"url":null,"abstract":"<p>Interval-censored data arise when a failure process is under intermittent observation and failure status is only known at assessment times. We consider the development of predictive algorithms when training samples involve interval censoring. Using censoring unbiased transformations and pseudo-observations, we define observed data loss functions, which are unbiased estimates of the corresponding complete data loss functions. We show that regression trees based on these loss functions can recover the tree structure and yield good predictive accuracy. An application is given to a study involving individuals with psoriatic arthritis where the aim is to identify genetic markers useful for the prediction of axial disease within 10 years of a baseline assessment.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11807","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Interval-censored data arise when a failure process is under intermittent observation and failure status is only known at assessment times. We consider the development of predictive algorithms when training samples involve interval censoring. Using censoring unbiased transformations and pseudo-observations, we define observed data loss functions, which are unbiased estimates of the corresponding complete data loss functions. We show that regression trees based on these loss functions can recover the tree structure and yield good predictive accuracy. An application is given to a study involving individuals with psoriatic arthritis where the aim is to identify genetic markers useful for the prediction of axial disease within 10 years of a baseline assessment.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.