Generative Diffusion Models for Fast Simulations of Particle Collisions at CERN

Mikołaj Kita, Jan Dubiński, Przemysław Rokita, Kamil Deja
{"title":"Generative Diffusion Models for Fast Simulations of Particle Collisions at CERN","authors":"Mikołaj Kita, Jan Dubiński, Przemysław Rokita, Kamil Deja","doi":"arxiv-2406.03233","DOIUrl":null,"url":null,"abstract":"In High Energy Physics simulations play a crucial role in unraveling the\ncomplexities of particle collision experiments within CERN's Large Hadron\nCollider. Machine learning simulation methods have garnered attention as\npromising alternatives to traditional approaches. While existing methods mainly\nemploy Variational Autoencoders (VAEs) or Generative Adversarial Networks\n(GANs), recent advancements highlight the efficacy of diffusion models as\nstate-of-the-art generative machine learning methods. We present the first\nsimulation for Zero Degree Calorimeter (ZDC) at the ALICE experiment based on\ndiffusion models, achieving the highest fidelity compared to existing\nbaselines. We perform an analysis of trade-offs between generation times and\nthe simulation quality. The results indicate a significant potential of latent\ndiffusion model due to its rapid generation time.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In High Energy Physics simulations play a crucial role in unraveling the complexities of particle collision experiments within CERN's Large Hadron Collider. Machine learning simulation methods have garnered attention as promising alternatives to traditional approaches. While existing methods mainly employ Variational Autoencoders (VAEs) or Generative Adversarial Networks (GANs), recent advancements highlight the efficacy of diffusion models as state-of-the-art generative machine learning methods. We present the first simulation for Zero Degree Calorimeter (ZDC) at the ALICE experiment based on diffusion models, achieving the highest fidelity compared to existing baselines. We perform an analysis of trade-offs between generation times and the simulation quality. The results indicate a significant potential of latent diffusion model due to its rapid generation time.
用于欧洲核子研究中心粒子碰撞快速模拟的生成扩散模型
在欧洲核子研究中心的大型强子对撞机中,高能物理模拟在揭示粒子对撞实验的复杂性方面发挥着至关重要的作用。机器学习仿真方法作为传统方法的替代品备受关注。虽然现有方法主要采用变异自动编码器(VAE)或生成对抗网络(GAN),但最近的进展凸显了扩散模型作为最先进的生成机器学习方法的功效。我们首次基于扩散模型在 ALICE 实验中模拟了零度量热器(ZDC),与现有基线相比达到了最高的保真度。我们对生成时间和仿真质量之间的权衡进行了分析。结果表明,延迟扩散模型因其快速生成时间而具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信