{"title":"‘Quantum plumbing’ at the nanoscale","authors":"Philip Ball","doi":"10.1088/2058-7058/37/05/30","DOIUrl":null,"url":null,"abstract":"Nanofluidics could be used to purify water, generate energy and build nanoscale machines. But when water flows through a carbon nanotube, classical fluid mechanics breaks down, leading to puzzling experimental findings that researchers have attributed to an effect called “quantum friction”, as Philip Ball explains.","PeriodicalId":54613,"journal":{"name":"Physics World","volume":"25 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics World","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-7058/37/05/30","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofluidics could be used to purify water, generate energy and build nanoscale machines. But when water flows through a carbon nanotube, classical fluid mechanics breaks down, leading to puzzling experimental findings that researchers have attributed to an effect called “quantum friction”, as Philip Ball explains.