{"title":"Bio-Printing of Materials for Bone Tissue Engineering","authors":"Taha Jafari, Seyed Morteza Naghib, M.R. Mozafari","doi":"10.2174/0113852728312464240529050217","DOIUrl":null,"url":null,"abstract":": The complicated internal mechanical and structural qualities of normal bone tissue still prevent the development of effective therapeutic procedures for major bone lesions. It is still difficult to use tissue engineering to return damaged bones back to how they were originally intended. Due to recent advances in 3D printing, together with the introduction of new materials and technological assistance, the basis for BTE has been established. Biological 3D biomaterials have cells inside them, which allows for the creation of structures that mimic real tissues. Microextrusion, inkjet, and laser-assisted bioprinting are the three primary methods used in 3D bioprinting manufacturing. Hydrogels packed with cells, growth hormones, and bioactive ceramics are among the bioinks utilized in bone bioprinting. With the use of magnetic resonance imaging or computed tomography scanning, 3D printing offers substantial benefits for tailored treatment by enabling the creation of scaffolds with the right structural qualities, form, and dimensions. Three-dimensional (3D) bioprinting is a cutting-edge technique that has been utilized recently to create multicellular, biomimetic tissues with layers upon layers of intricate tissue microenvironment printing. We approached the use of hydrogels with great strength in 3D printing for BTE with an emphasis on first providing a thorough study about the development of 3D printing, printing techniques, and ink selection in this review. A brief prediction on how 3D printing would advance in the future was made.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"24 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728312464240529050217","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
: The complicated internal mechanical and structural qualities of normal bone tissue still prevent the development of effective therapeutic procedures for major bone lesions. It is still difficult to use tissue engineering to return damaged bones back to how they were originally intended. Due to recent advances in 3D printing, together with the introduction of new materials and technological assistance, the basis for BTE has been established. Biological 3D biomaterials have cells inside them, which allows for the creation of structures that mimic real tissues. Microextrusion, inkjet, and laser-assisted bioprinting are the three primary methods used in 3D bioprinting manufacturing. Hydrogels packed with cells, growth hormones, and bioactive ceramics are among the bioinks utilized in bone bioprinting. With the use of magnetic resonance imaging or computed tomography scanning, 3D printing offers substantial benefits for tailored treatment by enabling the creation of scaffolds with the right structural qualities, form, and dimensions. Three-dimensional (3D) bioprinting is a cutting-edge technique that has been utilized recently to create multicellular, biomimetic tissues with layers upon layers of intricate tissue microenvironment printing. We approached the use of hydrogels with great strength in 3D printing for BTE with an emphasis on first providing a thorough study about the development of 3D printing, printing techniques, and ink selection in this review. A brief prediction on how 3D printing would advance in the future was made.
期刊介绍:
Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.