Vertex operators of the KP hierarchy and singular algebraic curves

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Atsushi Nakayashiki
{"title":"Vertex operators of the KP hierarchy and singular algebraic curves","authors":"Atsushi Nakayashiki","doi":"10.1007/s11005-024-01836-6","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-periodic solutions of the KP hierarchy acted by vertex operators are studied. We show, with the aid of the Sato Grassmannian, that solutions thus constructed correspond to torsion free rank one sheaves on some singular algebraic curves whose normalizations are the non-singular curves corresponding to the seed quasi-periodic solutions. It means that the action of the vertex operator has an effect of creating singular points on an algebraic curve. We further check, by examples, that solutions obtained here can be considered as solitons on quasi-periodic backgrounds, where the soliton matrices are determined by parameters in the vertex operators.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01836-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-periodic solutions of the KP hierarchy acted by vertex operators are studied. We show, with the aid of the Sato Grassmannian, that solutions thus constructed correspond to torsion free rank one sheaves on some singular algebraic curves whose normalizations are the non-singular curves corresponding to the seed quasi-periodic solutions. It means that the action of the vertex operator has an effect of creating singular points on an algebraic curve. We further check, by examples, that solutions obtained here can be considered as solitons on quasi-periodic backgrounds, where the soliton matrices are determined by parameters in the vertex operators.

Abstract Image

KP 层次的顶点算子和奇异代数曲线
我们研究了由顶点算子作用的 KP 层次的准周期解。我们借助佐藤格拉斯曼(Sato Grassmannian)证明,由此构建的解对应于一些奇异代数曲线上的无扭一阶剪,而这些奇异代数曲线的归一化是与种子准周期解相对应的非奇异曲线。这意味着顶点算子的作用会在代数曲线上产生奇异点。我们通过实例进一步证明,这里得到的解可以看作准周期背景上的孤子,其中孤子矩阵由顶点算子中的参数决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信